NAME

Module 6 Solving Absolute Value Equations and Inequalities
Lesson 3 Solving Inequalities Using "Absolute Value is Less Than"

Solve each inequality and graph the solution set.

1. $|r| \leq 4 \quad-4<r<4$

2. $|f-3.5| \geq 4 \quad f \geq 7.5$ or ≤-0.5

3. $\left|3+\frac{q}{2}\right|<1 \quad-8<q<-4$

4. $\frac{|4 w|}{2}<6 \quad-3<w<3$

Match the graph to the correct inequality.

9.

A. $|c+1.5| \leq 1$
B. $|c-1| \leq-2.5$
(C. $|c+2.5| \leq 1$
(C) 2003 BestQuest
2. $\left|\frac{c}{5}\right|<-2 \varnothing$

4. $|5 m-5| \leq 20-3 \leq m \leq 5$

6. $|y|-4 \leq-1 \quad-3 \leq y \leq 3$

8. $4|3 b+1|<0 \varnothing$

10.

A. $4+|x| \leq 6$
B. $2+|x|<2$
C. $2+|x| \leq 2$
(D. $4+|x|<6$

Journal

1. Why does the inequality $2|9 k+4|<0$ have no solution?
2. Is $3(x+2) \mid<15$ the same as writing $3|x+2|<15$? Verify your answer by solving each inequality.
3. Write an absolute value inequality using "less than" whose solution is graphed below. Explain how you found your answer.

4. Explain why the inequality $|x|<5$ can mean the distance between zero and x is less than 5 .
5. Use your response to question 4 to explain what distance is represented by $|y-3|<2$.

Cumulative Review

Rewrite each sentence as an algebraic equation or inequality.

1. Four times a number b is equal to nineteen.
$4 b=19$
2. Five is less than a number m squared.
$5<\mathrm{m}^{2}$
3. Twelve increased by m is greater than n increased by two.

$$
12+m>n+2
$$

7. Half of y decreased by seven is equal to z. $\frac{1}{2} y-7=z$
8. Seven times j is no more than k.

$7 \mathrm{j} \leq \mathrm{k}$

2. Five less than a number m squared is two. $m^{2}-5=2$
3. The product of x, y, and z, is zero.
$x y z=0$
4. A number k increased by g is equal to the sum of k and h.

$$
k+g=k+h
$$

8. Ten divided by p is at least negative sixteen.

$$
\frac{10}{p} \geq-16
$$

10. Eight more than the square root of x is nine.

$$
8+\sqrt{x}=9
$$

Possible Journal Responses

1. The inequality expression $2|9 k+4|<0$ has no solution because it means that 2 times the positive number $9 k+4$ is less than zero. The product of two positive numbers, however, is greater than or equal to zero.
2. Yes. Since 3 is positive $|3(x+2)|=3|x+2|$. To verify the answer, you can solve each inequality:

$$
\begin{array}{ll}
|3(x+2)|<15 & 3|x+2|<15 \\
3(x+2)<15 \text { and } 3(x+2)>-15 & |x+2|<5 \\
x+2<5 \text { and } x+2>-5 & x+2<5 \text { and } x+2>-5 \\
x<3 \text { and } x>-7 & x<3 \text { and } x>-7 \\
-7<x<3 & -7<x<3
\end{array}
$$

3. The inequality expression $-3<x<3$ means $x>-3$ and $x<3$. This is the same as $|x|<3$.
4. This is true because $|x|<5$ can be rewritten as $-5<x<5$. As you travel on the number line from 0 to 5 , the greatest distance you will travel is 5 . Likewise, if you travel from 0 to -5 the greatest distance traveled is also 5.
5. The distance between 0 and $(y-3)$ is less than 2.

Module 6 Lesson 3196

