DIGITAL

NAME		
Module 6	Solving Absolute Value Equations Inequalities	and independent
Lesson 3	Solving Inequalities Using "Absolu Value is Less Than"	ite practice
Solve each in	equality and graph the solution set.	and a second
1. <i>r</i> ≤ 4 <u>−</u> 4	< r < 4	2. $\left \frac{c}{5}\right < -2$ <i>Ø</i>
→ -5 -4	-3 -2 -1 0 1 2 3 4 5	-5 -4 -3 -2 -1 0 1 2 3 4 5
3. <i>f</i> − 3.5 ≥	£ 4 _ f≥7.5 or ≤ −0.5	4. 5 <i>m</i> − 5 ≤ 20 <u>−3 ≤ <i>m</i> ≤ 5</u>
-2 -1	0 1 2 3 4 5 6 7 8	-3 -2 -1 0 1 2 3 4 5 6 7
5. $\left 3 + \frac{q}{2}\right < 3$	8 < q < -4	6. <i>y</i> − 4 ≤ −1 _ -3 ≤ <i>y</i> ≤ 3
-10-9	♦ -8 -7 -6 -5 -4 -3 -2 -1 0	-5 -4 -3 -2 -1 0 1 2 3 4 5
7. $\frac{ 4w }{2} < 6$	-3 < w < 3	8 . 4 3b + 1 < 0 Ø
-5 -4	♦ ♦ -3 -2 -1 0 1 2 3 4 5	-5 -4 -3 -2 -1 0 1 2 3 4 5
Match the gra	aph to the correct inequality.	
9. -5 -4	-3 -2 -1 0 1 2 3 4 5	10. -5 -4 -3 -2 -1 0 1 2 3 4 5
A. <i>c</i> + 1.5	$ \leq 1$	A. $4 + x \le 6$
B. <i>c</i> − 1 :	≤ -2.5	B. $2 + x < 2$
C , c + 2.5	$ \delta \le 1$	C. $2 + x \le 2$
D. c + 4.5	$ \delta \le 6$	D . $4 + x < 6$

¢

Module 6 Lesson 3

Independent Practice

monotype composition _____

- **1.** Why does the inequality 2|9k + 4| < 0 have no solution?
- **2.** Is 3(x + 2) < 15 the same as writing 3|x + 2| < 15? Verify your answer by solving each inequality.
- 3. Write an absolute value inequality using "less than" whose solution is graphed below. Explain how you found your answer.

- **4.** Explain why the inequality |x| < 5 can mean the distance between zero and x is less than 5.
- **5.** Use your response to question 4 to explain what distance is represented by |y 3| < 2.

Cumulative Review

Rewrite each sentence as an algebraic equation or inequality.

1. Four times a number *b* is equal to nineteen.

4b = 19

3. Five is less than a number *m* squared.

 $5 < m^2$

5. Twelve increased by *m* is greater than *n* increased by two.

12 + m > n + 2

7. Half of *y* decreased by seven is equal to *z*. $\frac{1}{2}y - 7 = z$

7j ≤ k

9. Seven times *j* is no more than *k*.

2. Five less than a number *m* squared is two.

 $m^2 - 5 = 2$

4. The product of x, y, and z, is zero.

xyz = 0

6. A number k increased by g is equal to the sum of k and h.

 $\mathbf{k} + \mathbf{g} = \mathbf{k} + \mathbf{h}$

- **8.** Ten divided by *p* is at least negative sixteen. $\frac{10}{n} \ge -16$ р
- **10.** Eight more than the square root of x is nine.

 $8 + \sqrt{x} = 9$

Possible Journal Responses

1. The inequality expression 2|9k + 4| < 0 has no solution because it means that 2 times the positive number 9k + 4 is less than zero. The product of two positive numbers, however, is greater than or equal to zero.

2. Yes. Since 3 is positive |3(x + 2)| = 3|x + 2|. To verify the answer, you can solve each inequality: |3(x + 2)| < 15|3|x + 2| < 153(x + 2) < 15 and 3(x + 2) > -15|x + 2| < 5x + 2 < 5 and x + 2 > -5x + 2 < 5 and x + 2 > -5x < 3 and x > -7x < 3 and x > -7-7 < x < 3 -7 < x < 3

- © 2003 BestQuest 3. The inequality expression -3 < x < 3 means x > -3 and x < 3. This is the same as |x| < 3.
- 4. This is true because |x| < 5 can be rewritten as -5 < x < 5. As you travel on the number line
- from 0 to 5, the greatest distance you will travel is 5. Likewise, if you travel from 0 to -5 the greatest distance traveled is also 5.
- 5. The distance between 0 and (y 3) is less than 2. Module 6 Lesson 3 196

Independent Practice