NAME

Module 6	Solving Absolute Value Equations and
	Inequalities
Lesson 1	Solving Basic Absolute Value Equations

Solve the following absolute value equations.

1.	x = 7 <u>x = 7 or -7</u>
3.	x + 1 = 2 x = 1 or -3
5.	x + 3 = 12 x = 9 or -15
7.	x + 2 = 7 x = 5 or x = -9
9.	x + 1 = 3 x = 2 or -4
11.	x + 7 = 4 x = -3 or -11
13.	x-8 = 4 x = 12 or 4
15.	$\left \frac{x}{2}\right = 3 \ x = 6 \text{ or } -6$
17.	$\left \frac{\mathbf{x}}{3}\right = 0 \mathbf{x} = 0$
19.	$\left \frac{x}{2}\right = 2$ x = 4 or -4

2.	x = -4 Ø
4.	x + 3 = 6 x = 3 or -9
6.	x + 6 = 7 <u>x = 1 or -13</u>
8.	x + 9 = 1 <u>x = -8 or -10</u>
10.	x + 1 = 7 x = 6 or -8
12.	x + 5 = 5 x = 0 or -10
14.	x - 3 = 1 x = 4 or 2
16.	$\left \frac{x}{4}\right = 5$ <u>x = 20 or -20</u>
18.	$\left \frac{x}{3}\right = 4$ <u>x = 12 or -12</u>
20.	$\left \frac{x}{2}\right = 6$ <u>x = 12 or -12</u>

independent practice

- **1.** When solving for the variable in absolute value equations, why is there often more than one solution?
- **2.** How do absolute value problems and the symbol \pm translate into disjunction statements? Give examples.
- **3.** George says that the solution to the inequality |x 8| = 4 is x = 12. Sally says that the solution is x = 12 or -4. Who is correct and why?
- **4.** How many numbers are in the solution set of the equation |x + 3| = 6?
- **5.** Can you think of situations where there would be only one number in the solution set to solve an absolute value equation?
- **6.** Explain how to solve $\left|\frac{x}{4}\right| = 5$.

© 2003 BestQuest

monotype composition

Module 6 Lesson 1

Cumulative Review

Solve by inspection.

Possible Journal Answers

- 1. When you take the absolute value of an expression, its value could be positive or negative. You need to solve for the variable under each condition. For example, |x + 3| = 1 means that x + 3 could equal 1 or -1. You need to solve for x for these two conditions.
- 2. An absolute value problem such as |b| = 4 can be written as $b = \pm 4$ and then translated into a dysjunction statement b = 4 or b = -4.
- 3. Sally is correct. She remembered that x 8 can equal 4 or -4.
- 4. There are two numbers in the solution set, x = 3 and x = -9.
- 5. Equations of the form |x + a| = 0, where x is a variable and a is a real number, have only one solution.
- 6. Start by writing the two equations, $\frac{x}{4} = 5$, and $\frac{x}{4} = -5$., Then solve each equation by multiplying by four. So, x = 20 and x = -20. You can then write $x = \pm 20$.

© 2003 BestQuest

monotype composition

Module 6 Lesson 1