\qquad

Module 9 Characteristics of Geometric Shapes

Lesson 4 Similar Polygons

Lesson Notes

Lesson Objectives

- Identify shapes that have similarity.
- Identify similar figures and explore their properties.
- Develop the properties of similar figures (ratio of sides and congruent angles).
- Apply proportional reasoning to solve problems involving congruent or similar shapes (e.g., create scale drawings).

Subtopic 1 Similar Polygons

Similar Polygons

- Same shape
- Not necessarily the same size
- Congruent corresponding angles
- Proportional corresponding sides

Is rectangle $L M N O$ similar to rectangle HIJK?
Explain why or why not.

$$
\begin{aligned}
\frac{M N}{I J} & \stackrel{?}{=} \frac{L M}{H I} \\
\frac{10}{7} & \stackrel{?}{=} \frac{30}{20} \\
10 \times 20 & \stackrel{?}{=} 7 \times 30 \\
200 & \neq 210
\end{aligned}
$$

No: The sides are not in proportion.

Subtopic 2 Finding Unknown Lengths

Find each unknown length in the similar parallelograms.

$$
\begin{aligned}
\overline{A B} \cong \overline{D C}, \text { so } s=4 . \quad \frac{E F}{C B} & =\frac{E H}{C D} \quad \overline{A D} \cong \overline{B C}, \text { so } r=8 . \\
\frac{14}{t} & =\frac{7}{4} \\
7 t & =14 \times 4 \\
7 t & =56 \\
t & =8
\end{aligned}
$$

Subtopic 3 Enlargements and Reductions

Scale Factor
The ratio of two corresponding lengths in similar geometric figures

Find the 50% reduction of Luria's 4 in . by 6 in. photo by using a percent proportion.

$$
\begin{array}{ll}
\frac{\text { part }}{\text { whole }}=\frac{\%}{100} \\
\frac{\text { part }}{\text { whole }}=\frac{50}{100} & \\
\frac{h}{4}=\frac{50}{100} & \frac{l}{6}=\frac{50}{100} \\
\frac{h}{4}=\frac{1}{2} & \frac{l}{6}=\frac{1}{2} \\
\frac{2}{4}=\frac{1 \times 2}{2 \times 2} & \frac{3}{6}=\frac{1 \times 3}{2 \times 3} \\
h & =2 \text { inches }
\end{array}
$$

The 50% copy is 2 in . by 3 in .
\qquad

Module 9 Characteristics of Geometric Shapes
 Lesson 4 Similar Polygons

An 8 in. by 10 in. photo is enlarged by 700%. What are the dimensions of the enlargement?

$$
\begin{gathered}
700 \% \times \text { original } \\
\text { Scale Factor: } 7 \\
7 \times(8 \text { in. by } 10 \mathrm{in} .) \\
56 \mathrm{in} . \text { by } 70 \mathrm{in} .
\end{gathered}
$$

The 700\% enlargement dimensions are 56 in. by 70 in.

Subtopic 4 Scale Drawings

Scale Drawing
A drawing that is a reduction or enlargement of an actual object

Scale
The ratio between the measure on a drawing and the actual measurement

A 4 m by 6 m family room is being drawn on a blueprint with a scale of $1 \mathrm{~cm}=2 \mathrm{~m}$. What are the dimensions in the blueprint?

$$
\begin{aligned}
\frac{\text { drawing }(\mathrm{cm}) \rightarrow}{\text { actual }(\mathrm{m}) \rightarrow} \quad \frac{1}{2} & =\frac{x}{4} \\
2 x & =1 \times 4 \\
2 x & =4 \\
\frac{2 x}{2} & =\frac{4}{2} \\
x & =2
\end{aligned}
$$

$$
\frac{\text { drawing }(\mathrm{cm}) \rightarrow}{\text { actual }(\mathrm{m}) \rightarrow} \quad \frac{1}{2}=\frac{y}{6}
$$

$$
2 y=1 \times 6
$$

$$
2 y=6
$$

$$
\begin{aligned}
\frac{2 y}{2} & =\frac{6}{2} \\
y & =3
\end{aligned}
$$

The dimensions on the blueprint are 2 cm by $\mathbf{3 c m}$.

