\qquad
Module 8 Points, Lines, Angles, and Triangles
Lesson 7 Right Triangles

Lesson Objectives

- Prove and use the Pythagorean Theorem.
- Use special right triangles to solve real-life problems.

Subtopic 1 The Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.
$a^{2}+b^{2}=c^{2}$

A 20-foot ladder is placed against a building, so its base rests 12 feet from the base of the building. How high up the building does the ladder reach?

12 ft

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
12^{2}+b^{2} & =20^{2} \\
144+b^{2} & =400 \\
b^{2} & =256 \\
b & =16
\end{aligned}
$$

16 feet

Martha hikes from a ranger station eight miles south, then 12 miles west to a camp.
To the nearest hundredth of a mile, what is the direct distance between the ranger station and the camp?

$$
\begin{aligned}
8^{2}+12^{2} & =c^{2} \\
64+144 & =c^{2} \\
208 & =c^{2} \\
14.42 & \approx c
\end{aligned}
$$

About $\mathbf{1 4 . 4 2}$ miles

A 30-foot wire runs from the top of a telephone pole to a point on the ground eight feet from the base of the pole. What is the height of the telephone pole to the nearest foot?

$$
\begin{aligned}
8^{2}+b^{2} & =30^{2} \\
64+b^{2} & =900 \\
b^{2} & =836 \\
b & =\sqrt{836} \\
b & \approx 29 \text { feet }
\end{aligned}
$$

Subtopic 2 Using the Converse of the Pythagorean Theorem

If $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

The lengths of the sides of a triangle are seven, 24 , and 25 inches. Is this a right triangle?

$$
\begin{aligned}
7^{2}+24^{2} & \stackrel{?}{=} 25^{2} \\
49+576 & \stackrel{?}{=} 625 \\
625 & =625
\end{aligned}
$$

Yes

