\qquad
Module 8 Points, Lines, Angles, and Triangles
Lesson 6 Similar Triangles

Lesson

 Notes 8.6
Lesson Objectives

- Determine if triangles are similar.
- Develop the properties of similar triangles (ratio of sides and congruent angles).
- Use similar triangles to solve problems.

Subtopic 1 Similar Triangles

Similar Figures

- Have the same shape
- May or may not be the same size
- Corresponding angles are congruent.
- Corresponding sides are proportional.

To prove two triangles are similar:

- Show two pairs of angles are congruent.
(AA Similarity Rule)
- Show that all corresponding sides are proportional.
(SSS Similarity Rule)
$\triangle L E G \sim \triangle A R M$
Which angles are congruent? Which sides are proportional?

$\angle L \cong \angle A, \angle E \cong \angle \boldsymbol{R}, \angle \boldsymbol{G} \cong \angle M$
$\overline{L E}$ proportional to $\overline{A R}$
$\overline{L G}$ proportional to $\overline{A M}$
$\overline{G E}$ proportional to $\overline{M R}$

Determine if the two triangles are similar.

Subtopic 2 Using Similar Triangles

Indirect Measurement
A method of estimating distances that is difficult to measure directly
To measure the height of a street lamp, Rodney places a mirror on the ground and stands where he can see the top of the lamp in the mirror. Use the diagram to estimate the height of the street lamp.

$\Delta C E D \sim \Delta G E F$
AA Similarity Rule

$$
\begin{gathered}
\frac{D E}{F E}=\frac{C D}{G F} \\
\frac{3}{7}=\frac{6}{h} \\
3 \times h=7 \times 6 \\
3 \times h=42 \\
\frac{3 \times h}{3}=\frac{42}{3} \\
h=14
\end{gathered}
$$

14 feet tall

NAME

\qquad
Module 8 Points, Lines, Angles, and Triangles
Lesson 6 Similar Triangles

4 To measure the height of a flagpole, Martha used shadows. Use the diagram to estimate the height of the flagpole.

$$
\begin{aligned}
& \triangle X E D \sim \triangle X Y Z \\
& \text { AA Similarity Rule } \\
& \frac{X E}{X Y}=\frac{D E}{Z Y} \\
& \frac{3}{18}=\frac{4}{h} \\
& 3 \times h=18 \times 4 \\
& 3 \times h=72 \\
& \frac{3 \times h}{3}=\frac{72}{3} \\
& h=24
\end{aligned}
$$

24 feet tall

