\qquad
Module 8 Points, Lines, Angles, and Triangles Lesson 4 Triangles

Lesson Objectives

- Identify, describe, draw, and classify triangles as equilateral, isosceles, or scalene.
- Identify, describe, draw, and classify triangles as right, acute, obtuse, and equiangular.
- Use physical models and paper to determine the sum of the measures of interior angles of triangles.

Subtopic 1 Defining Triangles

Triangle

- Closed plane figure
- Three line segments (sides) joining three noncollinear points (vertices)

The dorsal fin of a sandbar shark is roughly triangular. For the triangle shown, name the sides, vertices, and angles. Write one name for the triangle.

Sides: $\overline{P R}, \overline{R Y}, \overline{Y P}$
Vertices: P, R, Y
Angles: $\angle P, \angle R, \angle Y$
Name: $\triangle P R Y$

The frame of a roof truss is in the shape of a triangle. Name the triangle's sides, vertices, and angles. Give one name for the triangle.

Sides: $\overline{T R}, \overline{R S}, \overline{S T}$
Vertices: S, R, T
Angles: $\angle T, \angle R, \angle S$
Name: $\triangle T R S$

Subtopic 2 Classifying Triangles

An acute triangle must have three acute angles.
A right triangle has one right angle.
An obtuse triangle has one obtuse angle.
An equilateral triangle has three congruent sides.
An isosceles triangle has at least two congruent sides.
A scalene triangle has three non-congruent sides.

Classify the triangle by its sides and by its angles.

5 Sketch an example of each figure.
Obtuse isosceles triangle Right scalene triangle Acute scalene triangle

NAME
 Module 8 Points, Lines, Angles, and Triangles
 Lesson 4 Triangles

Subtopic 3 Triangle Sum Property

Triangle Sum Property
The sum of the measures of the three interior angles of any triangle is $\underline{180^{\circ}}$.
In $\triangle A B C, \boldsymbol{m} \angle \boldsymbol{A}+\boldsymbol{m} \angle \boldsymbol{B}+\boldsymbol{m} \angle \boldsymbol{C}=180^{\circ}$.

An equiangular triangle has three congruent angles, each measuring 60°.
If a triangle is equiangular, it is also equilateral.

A school is building a triangular garden. One interior angle measures 58°. Another measures 82°. What is the measure of the third interior angle?

$$
\begin{gathered}
58^{\circ}+82^{\circ}+x=180^{\circ} \\
140^{\circ}+x=180^{\circ} \\
x=40^{\circ}
\end{gathered}
$$

40°

The gangway, or exit ramp, from a spaceship forms a 68° angle with the side of the ship. What angle does the gangway form with the ground?

The gangway forms a $\mathbf{2 2}^{\circ}$ angle with the ground.

Do these sets of angles form triangles? If so, are they acute, right, or obtuse?
$30^{\circ}, 60^{\circ}, 90^{\circ}$
$100^{\circ}, 20^{\circ}, 40^{\circ}$
$45^{\circ}, 55^{\circ}, 80^{\circ}$
$30^{\circ}+60^{\circ}+90^{\circ}=180^{\circ}$
Right triangle
$100^{\circ}+20^{\circ}+40^{\circ}=160^{\circ}$
No
$\mathbf{4 5}^{\circ}+55^{\circ}+80^{\circ}=180^{\circ}$
Acute triangle

