\qquad

Module 7 Ratio, Proportion, and Percent
 Lesson 1 Square Roots

Lesson Notes

Lesson Objectives

- Use models to differentiate between perfect squares up to 100 and other numbers.
- Recognize and identify perfect squares and their square roots.
- Represent and solve problem situations that can be modeled by and solved by using the concept of square roots for perfect squares.

Subtopic 1 Number Models

Square numbers can be modeled with an array that forms a square.
Is 75 a square number?
No; 75 cannot be modeled by a rectangular array that forms a square.
Is 49 a square number?

> YES

1	2	3	4	5	6	7
2						
3						
4						
5						
6						
7						

Is 100 a square number?

YES

1	2	3	4	5	6	7	8	9	10
2									
3									
4									
5									
6									
7									
8									
9									
10									

Is 60 a square number?
No; 60 cannot be modeled by a rectangular array that forms a square.

Subtopic 2 Perfect Squares and Their Square Roots

The product of an integer and itself is a perfect square.
A square number can only end with digits $0,1,4,5,6$, or 9 .
The square root of a number is an integer that when multiplied by itself equals the given number.
The symbol $\sqrt{ }$ indicates a square root.

Evaluate.
$5 \sqrt{121}$
$\sqrt{121}=11$

$$
\sqrt{6} \quad \sqrt{400}
$$

$\sqrt{400}=20$

$9^{2}+\sqrt{16}$

$8^{2}+\sqrt{36}$
$9^{2}+\sqrt{16}$
$8^{2}+\sqrt{36}$
$81+\sqrt{16}$
$\mathbf{6 4}+\sqrt{\mathbf{3 6}}$
$81+4$
85
$64+6$
70

Subtopic 3 Problem Solving Using Squares and Square Roots

To find the area of a square, square the length of a side. $A=s^{2}$
To find the length of a side of a square, take the square root of the area. $s=\sqrt{A}$
A checkerboard has 32 red squares and 32 black squares. How many squares long is each side of the checkerboard?

$$
\begin{gathered}
A=64 \text { sq units } \\
s=\sqrt{64} \\
s=8
\end{gathered}
$$

Each side has eight squares.

