NAME

Module 7Ratio, Proportion, and PercentLesson 1Square Roots

Lesson Objectives

- Use models to differentiate between perfect squares up to 100 and other numbers.
- Recognize and identify perfect squares and their square roots.
- Represent and solve problem situations that can be modeled by and solved by using the concept of square roots for perfect squares.

Subtopic 1

Number Models

Square numbers can be modeled with an array that forms a square.

Is 75 a square number?

No; 75 cannot be modeled by a rectangular array that forms a square.

Is 49 a square number?

YES

1	2	3	4	5	6	7
2						
3						
4						
5						
6						
7						

Is 100 a square number?

YES

1	2	3	4	5	6	7	8	9	10
2									
3									
4									
5									
6									
7									
8									
9									
10									

No; 60 cannot be modeled by a rectangular array that forms a square.

Subtopic 2 Perfect Squares and Their Square Roots

The product of an integer and **<u>itself</u>** is a perfect square.

A square number can only **end** with digits 0, 1, 4, 5, 6, or 9.

The square root of a number is an integer that when <u>multiplied</u> by itself equals the given number.

The symbol $\sqrt{}$ indicates a square <u>root</u>.

Subtopic 3 Problem Solving Using Squares and Square Roots

To find the area of a square, square the length of a <u>side</u>. $A = s^2$

To find the <u>length</u> of a side of a square, take the square root of the area. $s = \sqrt{A}$

A checkerboard has 32 red squares and 32 black squares. How many squares long is each side of the checkerboard?

A = 64 sq units $s = \sqrt{64}$ s = 8

Each side has eight squares.