\qquad
Module 6 Computational Fluency of Fractions
Lesson 6 Dividing Fractions

Lesson Objectives

- Model division of fractions using diagrams and/or illustrations of manipulatives.
- Develop and use algorithms for dividing fractions.

Subtopic 1 Dividing Using Models and the Invert-and-Multiply Algorithm

Two numbers are multiplicative inverses or reciprocals of each other if their product is 1 .

Multiplicative Inverse or Reciprocal

- For a nonzero number n, the reciprocal is $\frac{1}{n}$.
- Zero does not have a reciprocal.

When dividing a fraction or mixed number by a nonzero whole number, multiply the dividend by the reciprocal of the nonzero whole number.

Use a model to divide $\frac{5}{8}$ into five equal groups.

Pedro has $1 \frac{4}{5}$ hours to study for three tests. If Pedro divides his time equally, how long can he study for each test?

$$
1 \frac{4}{5} \div 3=1 \frac{4}{5} \times \frac{1}{3}=\frac{9}{5} \times \frac{1}{\not p_{1}}=\frac{3}{5}
$$

Pedro can study $\frac{3}{5}$ of an hour for each test.

Subtopic 2 Dividing Using Models and the Common Denominator Algorithm

Dividing Fractions Using the Common Denominator

- Write both fractions in terms of a common denominator.
- Divide the numerators.

Lewis has $\frac{15}{16}$ cup of juice mix. It takes $\frac{3}{8}$ cup of mix to make one pitcher of juice. How many pitchers of juice can Lewis make? Use a model.

$$
\frac{15}{16} \div \frac{6}{16}=2 \frac{1}{2}
$$

Lewis can make $2 \frac{1}{2}$ pitchers of juice.

To divide a fraction, whole number, or mixed number by a fraction, multiply the dividend by the reciprocal of the divisor.

