Computational Fluency of Fractions Adding Fractions with Unlike Denominators **Lesson Notes**

6.2

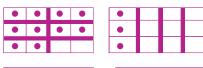
Lesson Objectives

- Find equivalent fractions.
- Model addition of fractions with unlike denominators using diagrams and/or illustrations of manipulatives.
- Develop and use algorithms to add fractions with unlike denominators.

Subtopic 1

Model Adding Fractions with Unlike Denominators

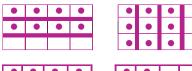
Model using 3×4 egg cartons.

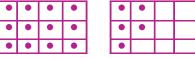


Module 6

Lesson 2

$$\frac{5}{6} + \frac{1}{4}$$


$$1\frac{1}{12}$$



$$\frac{2}{3} + \frac{3}{4}$$

$$1\frac{5}{12}$$

Subtopic 2 Adding Fractions with Unlike Denominators

When two or more fractions do not have a **common denominator**, they have **unlike denominators**.

Adding Fractions with Unlike Denominators

- Write equivalent fractions using a **common denominator**.
- Add.
- Write the answer in **simplest** form.

Grayson uses $\frac{2}{3}$ yard of ribbon for one bow and $\frac{1}{8}$ yard of ribbon for another bow. How much ribbon does Grayson use for both bows?

$$\frac{\frac{2}{3} + \frac{1}{8}}{\frac{2 \cdot 8}{3 \cdot 8} + \frac{1 \cdot 3}{8 \cdot 3}}$$

$$\frac{\frac{16}{24} + \frac{3}{24}}{\frac{16 + 3}{24}}$$

$$\frac{\frac{19}{24}}{\frac{19}{24}}$$

Grayson uses $\frac{19}{24}$ yard of ribbon for both bows.