\qquad
Module 5 Decimal Operations, Exponents, and Powers Lesson 7 Scientific Notation

Lesson Objectives

- Demonstrate an understanding of place values using powers of 10 and write numbers greater than one in scientific notation with and without appropriate technology.
- Convert between scientific notation and standard notation using numbers greater than one.
- Convert between scientific notation and standard notation using numbers from zero to one.

Subtopic 1 Powers of Ten with Integer Exponents

- Powers of 10 with integer exponents are place values.
- To write a power of 10 greater than or equal to 1 , count the number of zeros in the number. Use that number as the exponent.
- To write a power of 10 that is less than 1 , count the number of places after the decimal point. Use the opposite of that number as the exponent.
- To evaluate 10^{n} for n greater than or equal to 0 , write 1 followed by n zeros.
- To evaluate 10^{n} for $n \underline{\text { less than }} 0$, write 1 in the nth decimal place, preceded by as many zeros as necessary.

Write as a Power of 10 .

$$
\begin{gathered}
1,000,000 \\
\mathbf{1 0}^{\mathbf{6}}
\end{gathered}
$$

2
0.00001

Evaluate.

10^{7}
$\mathbf{1 0 , 0 0 0 , 0 0 0}$
4
10^{-7}
0.0000001

Subtopic 2 Multiply by a Power of Ten with an Integer Exponent

- To multiply by a power of 10 with a nonnegative integer exponent, move the decimal point one place to the right for every power of 10 .
- To multiply by a power of 10 with a negative integer exponent, move the decimal point one place to the left for every negative power of 10 .
- A number is written in expanded form when it is expressed as a sum of products of each digit and its place value.

Multiply.

14,250

$$
\begin{gathered}
0.35 \times 10^{-1} \\
.0 .35 \\
\mathbf{0 . 0 3 5}
\end{gathered}
$$

\star
Write 4.075 in expanded form.

苞	-	$\stackrel{n}{E}$		㢇
10^{0}	-	10^{-1}	10^{-2}	10^{-3}
4	-	0	7	5

$4.075=\left(4 \times 10^{0}\right)+\left(0 \times 10^{-1}\right)+\left(7 \times 10^{-2}\right)+\left(5 \times 10^{-3}\right)$
$4.075=4+0.07+0.005$

Subtopic 3 Scientific Notation

- Scientific notation presents a way to write numbers that are very large or very small.
- A number written in scientific notation is the product of a number that is at least $\underline{1}$ but less than $\underline{10}$ and a power of $\underline{10}$ in exponential form.

Tell whether the number is written in scientific notation.
5.6×10^{7}

8×10^{87}

Yes

0.4×10^{-5}
No
Yes
\qquad
Module 5 Decimal Operations, Exponents, and Powers
Lesson 7 Scientific Notation

Subtopic 4 Converting Between Standard and Scientific Notation

Writing a number greater than one in scientific notation

- Move the decimal point so only one nonzero number is before the decimal point.
- Count the number of places moved from the original decimal point.
- The number of places counted is the exponent of $\mathbf{1 0}$.
- If the count is to the right of the 1 st nonzero digit, the exponent is positive.

Writing a number less than one in scientific notation

- Move the decimal point so only one nonzero number is before the decimal point.
- Count the number of places moved from the original decimal point.
- The number of places counted is the exponent of $\mathbf{1 0}$.
- If the count is to the left of the 1st nonzero digit, the exponent is negative.

Write 876,000 in scientific notation.

Write 6.12×10^{-4} in standard notation.

$$
0 . \underset{-4}{0} \underset{-3}{0} \underset{-2}{0} \underset{-1}{0} \underset{-1}{6} 12
$$

$$
0.000612
$$

Write 0.00000024 in scientific notation.

Write 4.5×10^{-2} in standard notation.

$$
\begin{aligned}
& .0 \underset{-2-1}{\mathbf{~}} \mathbf{5} \\
& \mathbf{0 . 0 4 5}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{0 .} \underset{-7}{\mathbf{0}} \underset{-6}{\mathbf{0}} \underset{-5}{\mathbf{0}} \underset{-4}{\mathbf{0}} \underset{-1}{\mathbf{0}} \underset{-3}{\underset{-2}{0}} \underset{-2}{\mathbf{2}} \mathbf{2} \\
& 2.4 \times 10^{-7}
\end{aligned}
$$

$$
\begin{aligned}
& 8 \underset{1}{7} \underset{2}{6} \underset{3}{0} \underset{3}{0} \underset{\sim}{0} \underset{5}{0} . \\
& 8.76 \times 10^{5}
\end{aligned}
$$

