Module 5 Decimal Operations, Exponents, and Powers Lesson 6 Powers and Exponents

Notes 5.6

Lesson Objectives

- Use factors of numbers to introduce exponents and powers.
- Demonstrate an understanding of exponents and powers and an understanding of when to use exponents and powers in expressions.
- Define negative exponents.
- Solve problems with exponents and powers.

Subtopic 1

Exponents and Powers

- An **exponent** is a number that tells how many times a **base** is used as a factor.
- 4 is used as a factor $\underline{3}$ times, so 4 to the 3^{rd} power is written as $\underline{4}^3$.
- A <u>power</u> is a number raised to an exponent.
- In $4^3 = 64$, 4 is the **base** and 3 is the **exponent**.
- A negative number raised to a positive odd power has a **negative** value.
- A negative number raised to a positive even power has a **positive** value.

Write in exponential form.

$$(-6) \times (-6) \times (-6) \times (-6) \times (-6)$$

-6 is used as a factor 5 times.
 $(-6)^5$
 $(-6)^5 = -7,776$

Evaluate 7^3 .

Use 7 as a factor 3 times
$$7 \times 7 \times 7$$
 343

Evaluate 2 to the 6^{th} power.

$$2^6 \\ 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\ 64$$

Subtopic 2 **Using Exponents and Powers in Expressions**

Evaluate each expression.

$$(-4)^2 \times (-3)^3$$

 16×-27
 -432

$$\begin{array}{c}
2 (9-6)^{2} \\
2(3)^{2} \\
2(9) \\
18
\end{array}$$

$$\begin{array}{cccc}
 & 3^3 - 2^3 \\
 & 27 - 8 \\
 & 19
\end{array}$$

Subtopic 3 **Zero and Negative Exponents**

- Any nonzero number raised to the zero power equals <u>1</u>.
- $b^0 = 1 \ (b \neq 0)$
- Any nonzero number raised to a negative power is the same as one over the number raised to the **positive** power.

$$\bullet \quad b^{-n} = \frac{1}{b^n} \ (b \neq \underline{0})$$

Evaluate each expression.

$$\frac{3^{-4}}{1}$$

$$\frac{1}{3^4}$$

$$\frac{1}{3\times3\times3\times3}$$

$$\frac{1}{9\times9}$$

$$\frac{1}{81}$$

$$2^{\circ} \times 8^{\circ}$$
 64 × 1

Subtopic 4 **Solving Problems with Exponents and Powers**

Computer memory can be measured in bits, bytes, or kilobytes. There are 2³ bits in a byte and 2¹⁰ bytes in a kilobyte. How many bits are there in a kilobyte?

$$2^3$$
 bits = 1 byte

2 bits = 1 byte

$$2^{10}$$
 bytes = 1 kilobyte
 $2^3 \times 2^{10}$

$$2^3 \times 2^{10}$$

There are 8,192 bits in a kilobyte.

Module 5 Decimal Operations, Exponents, and Powers

Lesson 6 Powers and Exponents

Irma won a math contest. On the first day she received \$4. Then, for each day after the first day, she received double the preceding day's amount. How much money did Irma receive on the fifth day?

Day 1: \$4

Day 2: \$4 × 2

Day 3: $\$4 \times 2 \times 2$

Day 4: $\$4 \times 2 \times 2 \times 2$

Day 5: $\$4 \times 2 \times 2 \times 2 \times 2$

 $\$4 \times 2^4$

\$4 × 16

\$64

Irma received \$64.