\qquad

Module 5 Decimal Operations, Exponents, and Powers
 Lesson 6 Powers and Exponents

Lesson Notes

Lesson Objectives

- Use factors of numbers to introduce exponents and powers.
- Demonstrate an understanding of exponents and powers and an understanding of when to use exponents and powers in expressions.
- Define negative exponents.
- Solve problems with exponents and powers.

Subtopic 1 Exponents and Powers

- An exponent is a number that tells how many times a base is used as a factor.
- 4 is used as a factor 3 times, so 4 to the $3^{\text {rd }}$ power is written as 4^{3}.
- A power is a number raised to an exponent.
- In $4^{3}=64,4$ is the base and 3 is the exponent.
- A negative number raised to a positive odd power has a negative value.
- A negative number raised to a positive even power has a positive value.

Write in exponential form.

$$
\begin{aligned}
& (-6) \times(-6) \times(-6) \times(-6) \times(-6) \\
& -6 \text { is used as a factor } 5 \text { times. } \\
& (-6)^{5} \\
& (-6)^{5}=-7,776
\end{aligned}
$$

Evaluate 7^{3}.
Use 7 as a factor 3 times
$7 \times 7 \times 7$
343
,
Evaluate 2 to the $6^{\text {th }}$ power.
2^{6}
$2 \times 2 \times 2 \times 2 \times 2 \times 2$
64

Subtopic 2 Using Exponents and Powers in Expressions

Evaluate each expression.

$4(-4)^{2} \times(-3)^{3}$
16×-27
-432
$52(9-6)^{2}$
$2(3)^{2}$
2(9)
18
$6 \quad \begin{aligned} & 3^{3}-2^{3} \\ & 27-8\end{aligned}$
19

Subtopic 3 Zero and Negative Exponents

- Any nonzero number raised to the zero power equals $\mathbf{1}$.
- $b^{0}=\underline{1}(b \neq \underline{\mathbf{0}})$
- Any nonzero number raised to a negative power is the same as one over the number raised to the positive power.
- $b^{-n}=\frac{1}{\underline{\boldsymbol{b}^{n}}}(b \neq \mathbf{0})$

Evaluate each expression.

3^{-4}
$\frac{1}{3^{4}}$
 $2^{6} \times 8^{0}$
64×1
64
$\frac{1}{3 \times 3 \times 3 \times 3}$
$\frac{1}{9 \times 9}$
$\frac{1}{81}$

Subtopic 4 Solving Problems with Exponents and Powers

Computer memory can be measured in bits, bytes, or kilobytes. There are 2^{3} bits in a byte and 2^{10} bytes in a kilobyte. How many bits are there in a kilobyte?
2^{3} bits $=1$ byte
2^{10} bytes $=1$ kilobyte
$2^{3} \times 2^{10}$
$2 \times 2 \times 2$
2^{13}
There are 8,192 bits in a kilobyte.

NAME
Module 5 Decimal Operations, Exponents, and Powers
Lesson 6 Powers and Exponents

Irma won a math contest. On the first day she received $\$ 4$. Then, for each day after the first day, she received double the preceding day's amount. How much money did Irma receive on the fifth day?
Day 1: \$4
Day 2: $\$ 4 \times 2$
Day 3: $\$ 4 \times 2 \times 2$
Day 4: $\$ 4 \times 2 \times 2 \times 2$
Day 5: $\$ 4 \times 2 \times 2 \times 2 \times 2$
$\$ 4 \times 2^{4}$
$\$ 4 \times 16$
\$64
Irma received \$64.

