NAME

Module 4Fractions, Decimals, Percents, and FactorsLesson 3Factors and Prime Factorization

Lesson Notes 4.3

Lesson Objectives

- Find the factors of a number.
- Determine if a number is prime or composite.
- Find the prime factorization of a composite number.
- Use factors of a number to find common factors of two integers, including finding the Greatest Common Factor (GCF) of two or more integers.
- Use prime factorization to determine the Greatest Common Factor (GCF).

Subtopic 1

Finding the Factors of a Number

- **Factors** divide into a number with no remainder.
- Factors **multiply** to get a product.
- A number greater than one with only the factors one and itself is a **prime number**.
- A number that has more than two factors is a **composite number**.
- One and zero are neither prime nor composite.

Is 6 a factor of 21? Explain the answer.

No. Possible answer: $21 \div 6 = 3 \text{ R} 3$. There is a remainder, so six is not a factor of 21.

List the factors of 100. 1, 2, 4, 5, 10, 20, 25, 50, 100

Two is the only even number that is prime.

Determine whether each number is prime or composite.

9	composite
56	composite
29	prime

Subtopic 2

Finding the Prime Factorization of a Number

- To <u>factor</u> a number is to write it as the product of two or more factors.
- The <u>prime factorization</u> of a number shows the number written as the product of prime factors.
- Prime Factorization Using a Factor Tree

• Prime Factorization Using a Factor Ladder

	24
2	12
3	4
2	2

$$24 = \mathbf{2} \times \mathbf{2} \times \mathbf{2} \times \mathbf{3}$$

- This prime factorization, $75 = 3 \times 5 \times 5$, is written in <u>expanded</u> form.
- This prime factorization, $75 = 3 \times 5^2$, is written in <u>exponential</u> form.

Find the prime factorization of 48. $48 = 2 \times 2 \times 2 \times 2 \times 3$ or $48 = 2^4 \times 3$

6

Find the prime factorization of 98. $98 = 2 \times 7 \times 7$ or $98 = 2 \times 7^2$

Find the prime factorization of 150. $150 = 2 \times 3 \times 5 \times 5$ or $150 = 2 \times 3 \times 5^2$

NAME

Module 4	Fractions, Decimals, Percents, and Factors
Lesson 3	Factors and Prime Factorization

- A <u>common factor</u> is a number that is a factor of two or more numbers.
- The <u>Greatest Common Factor (GCF)</u> is the largest common factor of two or more numbers.

Find the common factors of 24 and 60. **1**, **2**, **3**, **4**, **6**, **12**

Find the GCF of 24 and 60. **12**

Using the Prime Factorization to Find the GCF

To find the GCF using prime factorization:

- Write the **prime factorization** of each number.
- The GCF is the **product** of the **common** prime factors.

Use prime factorization to find the GCF of 50 and 25. **25**

Use prime factorization to find the GCF of 98, 70, and 42. 14