\qquad
Module 13 Perimeter, Area, and Volume
Lesson 7 Volume: Pyramids and Cones

Lesson Notes

 13.7
Lesson Objectives

- Derive and use formulas for volume of pyramids and cones and justify using geometric models and common materials.
- Use cubic units to find the volume of pyramids and cones.
- Demonstrate understanding of when to use linear units to describe perimeter, square units to describe area or surface and cubic units to describe volume, in real-world situations.
- Compare and contrast the differences among linear units, square units, and cubic units.

Subtopic 1 Volume of a Cone

Volume of a Cone
$V=\frac{1}{3} \pi r^{2} h$

Find the volume.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times 3.14 \times(3 \mathrm{in} .)^{2} \times 11 \mathrm{in} . \\
& \approx 103.62 \mathrm{in}^{3}
\end{aligned}
$$

A cone shaped icing bag has a radius of three centimeters and a height of 18 centimeters. How many times will this can of icing fill the bag? The can is a cylinder with a radius of five centimeters and a height of 11 centimeters.

Volume of cylinder:

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=3.14 \times(5 \mathrm{~cm})^{2} \times 11 \mathrm{~cm} \\
& V \approx 863.5 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{gathered}
N=\left(863.5 \mathrm{~cm}^{3}\right) \div\left(169.56 \mathrm{~cm}^{3}\right) \\
N=5.09
\end{gathered}
$$

The can will fill the bag 5 times.

Subtopic 2 Volume of a Pyramid

Volume of a Pyramid

$$
V=\frac{1}{3} B \boldsymbol{h}
$$

Find the volume.

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
& =\frac{1}{3}(8 \mathrm{~m} \times 3 \mathrm{~m}) 5 \mathrm{~m} \\
& =\frac{1}{3}\left(24 \mathrm{~m}^{2}\right) \times 5 \mathrm{~m} \\
& =40 \mathrm{~m}^{3}
\end{aligned}
$$

NAME

Module 13 Perimeter, Area, and Volume
Lesson $7 \quad$ Volume: Pyramids and Cones
*
Find the volume.

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
& =\frac{1}{3}\left(\frac{1}{2} \times 6 \mathrm{~m} \times 8 \mathrm{~m}\right) h \\
& =\frac{1}{3} \times 24 \mathrm{~m}^{2} \times h \\
& =\frac{1}{3} \times 24 \mathrm{~m}^{2} \times 9 \mathrm{~m} \\
& =72 \mathrm{~m}^{3}
\end{aligned}
$$

