\qquad
Module 13 Perimeter, Area, and Volume
Lesson 6 Surface Area: Pyramids and Cones

Lesson Objectives

- Derive and use formulas for surface area of pyramids and cones.
- Use square units to find the surface area of pyramids and cones.

Subtopic 1 Surface Area of Pyramid

The slant height of a regular pyramid is the height of a lateral face.
Surface Area of a Pyramid
$L=\frac{1}{2} P l$
$S A=\overline{B+\frac{1}{2}} P l$

Find the total amount of material needed to construct the tent.

$$
\begin{aligned}
& S A=B+\frac{1}{2} P l \\
& S A=(8 \mathrm{ft} \times 8 \mathrm{ft})+\frac{1}{2} P l \\
& S A=64 \mathrm{ft}^{2}+\frac{1}{2} P l \\
& S A=64 \mathrm{ft}^{2}+\frac{1}{2}(32 \mathrm{ft}) \times 10 \mathrm{ft} \\
& S A=64 \mathrm{ft}^{2}+\mathbf{1 6 0} \mathrm{ft}^{2} \\
& S A=224 \mathrm{ft}^{2}
\end{aligned}
$$

The tent needs $224 \mathrm{ft}^{2}$ of material.

Find the approximate lateral area of the Great Pyramid at Giza, Egypt. It is a square pyramid with an approximate base length of 230 meters and a slant height of 186 meters.

$$
\begin{aligned}
& L=\frac{1}{2} P l \\
& L=\frac{1}{2}(4 \times 230 \mathrm{~m}) l \\
& L=\frac{1}{2}(920 \mathrm{~m}) \times 186 \mathrm{~m} \\
& L \approx 85,560 \mathrm{~m}^{2}
\end{aligned}
$$

The lateral area is about $85,560 \mathrm{~m}^{2}$.

Subtopic 2 Surface Area of Cone

The slant height of a cone is the distance from the vertex to the edge of the base.
Surface Area of a Cone
$S A=\underline{\pi r^{2}+\pi r l}$

Find the surface area of the cone.

$$
\begin{aligned}
S A & =\pi r^{2}+\pi r l \\
& =3.14 \times(4 \mathrm{~cm})^{2}+3.14 \times 4 \mathrm{~cm} \times 14 \mathrm{~cm} \\
& =50.24 \mathrm{~cm}^{2}+175.84 \mathrm{~cm}^{2} \\
& \approx 226.08 \mathrm{~cm}^{2}
\end{aligned}
$$

The surface area is about $226.08 \mathrm{~cm}^{2}$.

NAME

Module 13 Perimeter, Area, and Volume
Lesson 6 Surface Area: Pyramids and Cones

The antenna on a sailboat provides a "cone of protection" from lightning around the boat. This cone of protection has a diameter of 72 feet and a slant height of 60 feet. Find the surface area of the cone of protection. Round the answer to the nearest foot.

$$
\begin{aligned}
S A & =\pi r^{2}+\pi r l \\
& =3.14 \times\left(36 \mathrm{ft}^{2}+3.14 \times 36 \mathrm{ft} \times 60 \mathrm{ft}\right. \\
& =4,069.44 \mathrm{ft}^{2}+6,782.4 \mathrm{ft}^{2} \\
& \approx \mathbf{1 0 , 8 5 1 . 8 4} \mathrm{ft}^{2}
\end{aligned}
$$

The surface area is about $10,852 \mathrm{ft}^{2}$.

