Module 13Perimeter, Area, and VolumeLesson 2Area

Lesson Objectives

- Establish and apply formulas to find the area of triangles and different types of quadrilaterals.
- Develop and use strategies to solve problems involving the area of quadrilaterals and the area of a circle.
- Demonstrate understanding of when to use linear units to describe perimeter and square units to describe area.
- Find different areas for a given perimeter and find different perimeters for a given area.

Subtopic 1

Area of Rectangles and Parallelograms

Area

The number of square units or the amount of space in a region

Area of a <u>Square</u>

$$A = s^2$$

Area of a Rectangle

$$A = \underline{lw}$$

Area of a Parallelogram

A = <u>**bh**</u>

Find the area of the parallelogram where the base is eight feet and the height is 15 feet.

A = bhA = 8(15) = 120

The area is 120 ft².

Area of a Triangle

Subtopic 2

Area of a Trapezoid

$$A = \frac{1}{2} \left(\frac{\boldsymbol{b}_1 + \boldsymbol{b}_2}{h} \right) h$$

Area of a <u>Circle</u> $A = \pi r^2$

Find the area of the triangular wing of this plane which has a base of 90 feet and a height of 37 feet.

$$A = \frac{1}{2} bh$$

$$A = \frac{1}{2} (90)(37)$$

$$A = 1,665$$

The area is 1,665 ft².

C 2007 BestQuest

NAME

Module 13Perimeter, Area, and VolumeLesson 2Area

A cafeteria tray is shaped like a trapezoid. Find the area of the tray.

$$A = \frac{1}{2} (b_1 + b_2)h$$
$$A = \frac{1}{2} (18 + 14)13$$
$$A = \frac{1}{2} (32)13$$
$$A = (16)13 = 208$$

The area is 208 square inches.

A circular swimming pool cover has an area of 452.16 square feet. Estimate the diameter of the swimming pool cover.

$$A = \pi r^{2}$$

$$\frac{452.16}{\pi} = \frac{\pi r^{2}}{\pi}$$

$$\frac{452.16}{\pi} = r^{2}$$

$$\frac{452.16}{3.14} \approx r^{2}$$

$$144 \approx r^{2}$$

$$12 \approx r$$

$$d \approx 12 \ge 2$$

$$d \approx 24$$

The diameter of the pool cover is about 24 feet.

Subtopic 3

6

Find Different Areas for a Given Perimeter

Luria bought an astro-cow. What is the smallest number of one-yard fencing sections she needs to enclose a rectangular pasture containing 36 square yards of astro-turf?

$A (yd^2)$	Length (yd)	Width (yd)	P (yd)
36	1	36	74
36	2	18	40
36	3	12	30
36	4	9	26
36	6	6	24

The smallest number of sections needed is 24.