\qquad
Module 13 Perimeter, Area, and Volume
Lesson 2 Area

Lesson Notes

Lesson Objectives

- Establish and apply formulas to find the area of triangles and different types of quadrilaterals.
- Develop and use strategies to solve problems involving the area of quadrilaterals and the area of a circle.
- Demonstrate understanding of when to use linear units to describe perimeter and square units to describe area.
- Find different areas for a given perimeter and find different perimeters for a given area.

Subtopic 1 Area of Rectangles and Parallelograms

Area
The number of square units or the amount of space in a region

Area of a $\underline{\text { Square }}$
$A=s^{2}$

Area of a Rectangle
$A=\underline{l w}$

Area of a Parallelogram
$A=\underline{b} \boldsymbol{h}$

Find the area of the window.
$A=l w$
$A=2.5(2)=5$
The area is $5 \mathrm{~m}^{2}$.

Find the area of the parallelogram where the base is eight feet and the height is 15 feet.

$$
\begin{aligned}
& A=b h \\
& A=8(15)=120
\end{aligned}
$$

The area is $\mathbf{1 2 0} \mathrm{ft}^{2}$.

Subtopic 2 Area of Triangles, Trapezoids, and Circles
Area of a Triangle $A=\frac{1}{2} \boldsymbol{b} \boldsymbol{h}$

Area of a Trapezoid
$A=\frac{1}{2} \underline{\left(\boldsymbol{b}_{1}+\boldsymbol{b}_{2}\right)} h$

Area of a Circle
$A=\underline{\pi r^{2}}$

Find the area of the triangular wing of this plane which has a base of 90 feet and a height of 37 feet.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(90)(37) \\
& A=1,665
\end{aligned}
$$

$$
\text { The area is } 1,665 \mathrm{ft}^{2} \text {. }
$$

\qquad
Module 13 Perimeter, Area, and Volume
Lesson 2 Area

A cafeteria tray is shaped like a trapezoid. Find the area of the tray.

$$
\begin{aligned}
& A=\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
& A=\frac{1}{2}(18+14) 13 \\
& A=\frac{1}{2}(32) 13 \\
& A=(16) 13=208
\end{aligned}
$$

The area is 208 square inches.

A circular swimming pool cover has an area of 452.16 square feet. Estimate the diameter of the swimming pool cover.

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{452.16}{\pi} & =\frac{\pi r^{2}}{\pi} \\
\frac{452.16}{\pi} & =r^{2} \\
\frac{452.16}{3.14} & \approx r^{2} \\
144 & \approx r^{2} \\
12 & \approx r \\
d & \approx \mathbf{1 2 \times 2} \\
d & \approx 24
\end{aligned}
$$

The diameter of the pool cover is about 24 feet.

Subtopic 3 Find Different Areas for a Given Perimeter

Luria bought an astro-cow. What is the smallest number of one-yard fencing sections she needs to enclose a rectangular pasture containing 36 square yards of astro-turf?

A $\left(\right.$ yd $\left.^{2}\right)$	Length $(y d)$	Width $\left(\right.$ yd 2	\boldsymbol{P} $(y d)$
36	1	36	74
36	2	18	40
36	3	12	30
36	4	9	26
$\mathbf{3 6}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{2 4}$

The smallest number of sections needed is 24 .

