\qquad

Module 11 Transformation of Shapes
 Lesson 4 Symmetry

Lesson Notes

Lesson Objectives

- Identify lines of symmetry in two-dimensional shapes (e.g. letters of the alphabet, polygons).
- Determine if two shapes have line symmetry, rotation symmetry, and/or point symmetry.

Subtopic 1 Line Symmetry

A figure with line symmetry can be divided along a line into congruent mirror images.
This line of division is called the line of symmetry.

- Horizontal
- Vertical
- Diagonal

A reflection line is also a line of symmetry.

Draw all lines of symmetry on each figure.
a.

c.

d.

Complete the figure so it is symmetric to the x-axis.

Subtopic 2 Rotational Symmetry

A figure has rotational symmetry if a rotation of less than $\underline{360^{\circ}}$ about a fixed point reproduces a figure of the same orientation as the original.

This fixed point is called the point of rotation.
The number of times a figure rotates into the same orientation in one full turn is the order of rotation.

Finding angles of rotational symmetry:

- Find the order of rotational symmetry, n.
- Angles of rotational symmetry equal $\underline{\boldsymbol{n}-\mathbf{1}}$.
- $\frac{360^{\circ}}{n}, 2\left(\frac{360^{\circ}}{n}\right), \ldots,(n-1)\left(\frac{360^{\circ}}{n}\right)$

List all the angles of rotational symmetry of the snowflake. Then, name the order of the rotational symmetry.

$$
60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}:
$$

Order 6

List all the angles of rotational symmetry of the rectangle.
Then name the order of the rotational symmetry.

$$
180^{\circ} \text { : Order } 2
$$

Subtopic 3 Point Symmetry

A figure has point symmetry if it has $\underline{\mathbf{1 8 0}}{ }^{\circ}$ rotational symmetry.
Point symmetry is a special case of rotational symmetry.

- Any figure with point symmetry has rotational symmetry.
- Not all figures with rotational symmetry have point symmetry.

Does the figure have rotational symmetry and point symmetry? Explain the answer.

Rotational symmetry of Order 5: There is

 no point symmetry.

Draw all the lines of symmetry on the regular hexagon. List all the angles of rotational symmetry. Does the figure have point symmetry?

$$
60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}: \text { Yes }
$$

