\qquad
Module 5 Decimal Operations, Exponents, and Powers
Lesson 7 Scientific Notation

Independent Practice

Write as a power of 10 .

1. 100,000 10^{5}
2. 0.0001
10^{-4}
3. $1,000,000$
10^{6}
4. $\begin{gathered}0.001 \\ 10^{-3}\end{gathered}$

Evaluate.
5. 10^{8}
6. 10^{-5}
$100,000,000$
7. 10^{-1}
0.1
8. 10^{4}

10,000

Multiply.
9. 4.5×10^{5}
10. $1,231 \times 10^{-5}$

450,000
0.01231
11. 608.9×10^{-2}
6.089
12. 0.02×10^{7}

200,000

Write in expanded form.
13. 7.143

$$
\begin{aligned}
& 7 \times 10^{0}+1 \times 10^{-1}+4 \times 10^{-2}+ \\
& 3 \times 10^{-3} \text { or } 7+0.1+0.04+0.003
\end{aligned}
$$

14. 42.71
$4 \times 10^{1}+2 \times 10^{0}+7 \times 10^{-1}+$
1×10^{-2} or $40+2+0.7+0.01$

Is the expression written in scientific notation? If not, write it in scientific notation.
15. 50×10^{-5}

No: 5.0×10^{-4}
17. The wavelength of x-rays is about $10^{-10} \mathrm{~m}$. Write this number in standard form.

$$
0.0000000001 \mathrm{~m}
$$

16. 1.2×10^{9}
Yes
17. The length of the Great Wall of China is about $6,400 \mathrm{~km}$. Write this number in scientific notation.

$$
6.4 \times 10^{3} \mathrm{~km}
$$

Write each expression as a number in standard form.
19. $\left(5.3 \times 10^{4}\right)+\left(6.6 \times 10^{-2}\right)$ 53,000.066
20. $\left(7.9 \times 10^{-2}\right)+\left(2.3 \times 10^{3}\right)$ 2,300.079

Journal

1. Explain how to write an integer power of 10 .
2. Explain how to evaluate 10^{n} for any integer n.
3. Explain how to multiply by a power of 10 with an integer exponent.
4. Explain how to convert a number in standard notation to scientific notation.

Cumulative Review

Order each set of numbers from least to greatest.

1. $0.54,-0.51,-0.54, \frac{56}{100}$
$-0.54,-0.51,0.54, \frac{56}{100}$
2.

$-0.65,-0.81,-0.35,-\frac{6}{10}$
$-0.81,-0.65,-\frac{6}{10}-0.35$

Add.
3. $6.78+0.4$
7.18
4. $4.66+1.21$
5.87

NAME

\qquad
Module 5 Decimal Operations, Exponents, and Powers
Lesson 7 Scientific Notation

Subtract.

5. $2.3-0.23$
6. $7.11-3.345$
2.07
3.765

Evaluate each expression and check for reasonableness of the answer.
7. 3.9×8.1
$4 \times 8=32$
$3.9 \times 8.1 \approx 32$
$3.9 \times 8.1=31.59$
8. 14.5×0.77
$15 \times 1=15$
$14.5 \times 0.77 \approx 15$
$14.5 \times 0.77=11.165$
9. $42 \div 96$
$40 \div 100=0.4$
$42 \div 96 \approx 0.4$
$42 \div 96=0.4375$
10. $55.4 \div 2$
$56 \div 2=28$
$55.4 \div 2 \approx 28$
$55.4 \div 2=27.7$

Evaluate.

11. -4^{2}
12. $(-3)^{4}$
-16
81
13. 6 to the $2^{\text {nd }}$ power

$$
36
$$

14. 2 to the $6^{\text {th }}$ power
64
15. $5^{2}-3^{3}$
-2
16. $-95(7-8)^{11}$
95

Possible Journal Answers

1. To write a power of $\mathbf{1 0}$ greater than or equal to one, I count the number of zeros in the number and use that number as the exponent. To write a power of 10 that is less than one, I count the number of places after the decimal point and use the opposite of that number as the exponent.
2. To evaluate 10^{n} for an integer n greater than or equal to zero, I write one followed by n zeros. To evaluate $\mathbf{1 0}^{\boldsymbol{n}}$ for integer \boldsymbol{n} less than zero, I write one in the \boldsymbol{n} th decimal place, preceded by as many zeros as necessary.
3. To multiply by a power of 10 with a nonnegative integer exponent, I move the decimal point one place to the right for every power of 10 . To multiply by a power of 10 with a negative integer exponent, I move the decimal point one place to the left for every negative power of 10 .
4. To write a number in scientific notation, I move the decimal point so only one nonzero digit appears to the left of the decimal point. I count the number of places I moved from the original decimal point. The number of places I counted is the exponent of $\mathbf{1 0}$. If I counted to the right of the first nonzero digit, the exponent is positive. If I counted to the left of the first nonzero digit, the exponent is negative.
