$\qquad$
Module 5 Decimal Operations, Exponents, and Powers
Lesson 1 Rounding and Comparing Decimals

Round each decimal to the nearest whole number.

1. 5.09
2. 0.761
3. 3.655
5
1
4

Round each decimal to the nearest tenth.
4. 1.23
5. 0.9901
6. 4.408
1.2
1
4.4

Round each decimal to the nearest hundredth.
7. 0.5645
8. 6.089
9. 2.196
0.56
6.09
2.2

Round each decimal to the nearest thousandth.
10. 9.0005
11. 0.2417
12. 7.8753
9.001
0.242
7.875

Use <, >, or = to compare each pair of decimals.
13. 2.38 and 2.58
$2.38<2.58$
15. 0.2576 and 0.2568
$0.2576>0.2568$
17. -9.4491 and -9.4391
$-9.4491<-9.4391$
14. -3.455 and 3.456
$-3.455<3.456$
16. 0.1330 and 0.133
$0.1330=0.133$
18. -1.9431 and -1.8999
$-1.9431<-1.8999$

Round each decimal to the nearest tenth. Compare the rounded numbers using <, >, or $=$.
19. 0.405 and 0.414
$0.4=0.4$
20. -8.7488 and -8.7501
$-8.7>-8.8$

## Journal

1. Which will give you the greatest number: rounding 0.4168 to the nearest tenth or the nearest hundredth? Explain.
2. Round 2.0521 to the nearest thousandth. Explain your procedure.
3. Which number is closer to zero on a number line: -3.1208 or -3.1028? Explain.

## Cumulative Review

1. Name the fraction shown by the shaded region.

2. Complete the table.

| Fraction | Decimal | Percent |
| :--- | :--- | :--- |
|  | 0.97 |  |

2. What is the ratio of shaded cylinders to white cylinders? Express the ratio in all three ways.

3. Write the fraction in simplest form.
$\frac{14}{30}$

7
15
$\qquad$
Module 5 Decimal Operations, Exponents, and Powers
Lesson 1 Rounding and Comparing Decimals
5. Write the mixed number as an improper fraction.
$4 \frac{2}{3}$
$\frac{14}{3}$
7. Find the greatest common factor of 22 and 121.

11
9. Find the LCM of 9, 12 and 18 using prime factorization.

36
6. Write the improper fraction as a mixed number.
$\frac{15}{4}$
$3 \frac{3}{4}$
8. Find the least common multiple of 18 and 72.

72
10. Jordan is making picture frames for her friends. She wants to glue shells around each frame. Medium shells come in packages of 20 , small shells come in packages of 30 , and large shells come in packages of 12 . If Jordan buys at least one package of small shells, how many shells of each size will she have to buy to have an equal number of each? How many packages of each size will she have to buy?

60 shells of each size: three medium, two small, five large

## Possible Journal Answers

1. Rounding 0.4168 to the nearest hundredth will give me the greater number. When rounding this number to the nearest tenth, the digit in the tenths place is four, and the number to the right of it is less than five, which makes the rounded number 0.40 . When rounding the same number to the nearest hundredth, the digit in the hundredths place is one, and the number to the right of it is greater than five, so the number rounds up to 0.42 , which shows $0.42>0.40$.
2. 2.052: I found the number in the thousandths place. The number to the right of it is one. One is less than five, so the thousandths digit remains the same. I put a zero in the ten thousandths place. Since that zero is at the end of the decimal, I dropped the zero. The rounded number is 2.052 .
3. -3.1028: I found the absolute value of each number. Since $|-3.1208|>|-3.1028|,-3.1208<-3.1028$. Therefore, $-\mathbf{3 . 1 0 2 8}$ is closer to zero than -3.1208.
