\qquad
Module 2 Whole Number Operations
Lesson 3 Large Numbers: Multiplication

Independent Practice

Estimate before multiplying.

1. 511×5
$\approx 2,500$
$=2,555$
2. 297×6
$=1,782$
3. 302×91
4. 790×38
$\approx 27,000$ or $\mathbf{3 0 , 0 0 0}$
$=\mathbf{2 7 , 4 8 2}$
5. 489×4
$\approx 2,000$
$=1,956$
6. 909×7
$\approx 6,300$
$=6,363$

$$
\approx 1,800
$$

$\approx 32,000$
$=30,020$

Solve using the Partial Products Method.

7. Marion's field hockey team has 26 players. If each player has 15 fans attend the game, how many fans are there all together?

$$
390 \text { fans }
$$

9. The school library has 65 racks for books. If each rack has 11 shelves, how many shelves are there in all? 715 shelves
10. There are 281 trucks in the fleet. If each truck has 18 wheels, how many wheels are there in all?

5,058 wheels
8. A new housing development has 57 houses. Each house is landscaped with 21 shrubs. How many shrubs are planted in all?

$$
\mathbf{1 , 1 9 7} \text { shrubs }
$$

10. A grid is formed using 48 columns and 31 rows. How many squares are formed in the grid?

$$
1,488 \text { squares }
$$

12. There are 219 classes at the local university. Each class has 23 students enrolled. How many students are there all together?

$$
5,037 \text { students }
$$

Solve using the Standard Multiplication Method with or without manipulatives.

13. 64×18

1,152
15. 77×68

5,236
17. 205×35

7,175
14. 78×43

3,354
16. 132×22

2,904
18. 419×56

23,464

Solve.
19. Use each of the digits $1,3,6$, and 8 once to make the largest possible product.

631
$\begin{array}{r}\times 8 \\ \hline 5,048\end{array}$
20. Use each of the digits $3,4,6$, and 7 once to make the smallest possible product.

467
$\frac{\times 3}{1,401}$

Journal

1. Explain how to estimate the product of 37 and 203.
2. Multiply 37×203 using the Partial Products Method of multiplying. Explain the procedure.
3. Multiply 18×388 using the traditional algorithm for multiplication. Explain the procedure.
\qquad
Module 2 Whole Number Operations
Lesson 3 Large Numbers: Multiplication

Cumulative Review

Add each of the following.

1. 6,347
$+185$
6,532
Subtract each of the following.
2. 486
-229
257

Solve each of the following.
5. During one card game, Kelsey scored 1,145 points for the first hand; 2,008 points for the second hand; and 984 points for the third hand. How many points did Kelsey score in all?

4137 points
7. Last year, there were 4,201 students enrolled at Kara's school. This year, the enrollment increased by 274 students. How many students are enrolled in Kara's school this year?

4475 students
9. Jules found a computer that she wanted to buy that cost $\$ 2,032$. Her father found one at a second hand store that cost $\$ 1,450$. How much more does the computer cost that Jules wants to buy?
\$582
2. 1,055

2,428
2,672
$+\mathbf{9 , 1 5 5}$
9,155
4. $\begin{array}{r}977 \\ -565 \\ \hline 412\end{array}$
6. If Martin climbed 1,245 feet up a slippery slope and slid back down 766 feet, how many feet would he still be up the slope?

479 feet
8. John is walking on a trail that is 1,758 feet long. He already has walked 855 feet. How many more feet does he have left to walk? 903 feet
10. An office supply store sold calculators for three weeks. The number sold for each week is shown below:

542
137
459
What is the total number of calculators sold in those three weeks?

1,138 calculators

Possible Journal Answers

1. Round 37 to $\mathbf{4 0}$. Round 203 to $\mathbf{2 0 0}$. Multiply 40×200. The estimated product is 8,000.
2. Multiply each partial product and then find the sum of all of the partial products.

$$
\begin{aligned}
& 203 \\
& \times 37 \\
& \hline 6,000=30 \times 200 \\
& 90=30 \times 3 \\
& 1,400=7 \times 200 \\
& \frac{21}{7,511}=7 \times 3
\end{aligned}
$$

$$
\begin{aligned}
& 203 \\
& \times 37 \\
& 21=7 \times 3 \\
& 1400=7 \times 200 \\
& 90=30 \times 3 \\
& \frac{6000}{7,511}=30 \times 200
\end{aligned}
$$

3. The larger number, 388, goes on top of the multiplication problem. First, multiply 388×8. Next, multiply 388×10. Last, add the two partial products together:
$3,104+3,880=6,984$.

$$
388
$$

$\times 18$
$\times 3108$

$$
\frac{3880}{6,984}
$$

