$\qquad$
Module 5 Decimal Operations, Exponents, and Powers

## Set 1

Write as a Power of 10.


Write in standard form.

$10^{6}$
$1,000,000$
(4)
$10^{-8}$
0.00000001

## Set 2

Write in standard form.
(1)

$$
\begin{gathered}
102.5 \times 10^{2} \\
\mathbf{1 0 , 2 5 0}
\end{gathered}
$$

(2)
$1,087 \times 10^{-3}$
1.087

3
Write 9.307 in expanded form.

| $\begin{aligned} & \text { E } \\ & 0 \end{aligned}$ | - | $\stackrel{n}{E}$ | 号 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | - |  |  |  |
| $10^{0}$ | - | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ |
| 9 | - | 3 | 0 | 7 |

$$
\begin{aligned}
& 9.307=9 \times 10^{0}+3 \times 10^{-1}+0 \times 10^{-2}+7 \times 10^{-3} \\
& 9.307=9+0.3+0.007
\end{aligned}
$$

## Set 3

Tell whether the number is written in scientific notation.


## Set 4

Light travels at a speed of about 300,000 kilometers per second. Write the number 300,000 in scientific notation.

> speed of light
> $300,000 \mathrm{~km} / \mathrm{sec}$
> 3.000000
> 123

The diameter of Saturn is approximately $1.2 \times 10^{5}$ kilometers. Write $1.2 \times 10^{5}$ in standard notation.

diameter of Saturn<br>$1.2 \times 10^{5} \mathrm{~km}$<br>1.20000.<br>$120,000 \mathrm{~km}$

The diameter of the Sun is approximately $1.4 \times 10^{6}$ kilometers. Write $1.4 \times 10^{6}$ in standard notation.

## diameter of the Sun

$1.4 \times 10^{6} \mathrm{~km}$
1.4000000.
$1,400,000 \mathrm{~km}$
$\qquad$
Module 5 Decimal Operations, Exponents, and Powers
Lesson 7 Scientific Notation
(4) The wavelength of red light is 0.00000075 m . Write this number in scientific notation.

> wavelength of red light
> 0.00000075 m
> $0 . \underset{-7}{0} \underset{-6}{0} \underset{-5-4}{0} \underset{-3-2}{0} \underset{-1}{0} \underset{-1}{7} .5$
> $7.5 \times 10^{-7} \mathrm{~m}$

The mass of a dust particle is 0.000000000753 kilograms. Write this number in scientific notation.

$$
\begin{aligned}
& \text { mass of a dust particle } \\
& 0.000000000753 \mathrm{~kg} \\
& 0 .{\underset{-10}{0}}_{0.0}^{0} \underbrace{0}_{-9} \underset{-8}{0} \underset{-7}{0} \underset{-6}{0} \underset{-5-4}{0} \underset{-3}{0} \underset{-2}{0} \underset{-1}{7} .53 \\
& 7.53 \times 10^{-10} \mathrm{~kg}
\end{aligned}
$$

The radius of a hydrogen atom is $2.5 \times 10^{-11}$ meters. Write this number in standard notation.
radius of a hydrogen atom
$2.5 \times 10^{-11} \mathrm{~m}$
$0 . \underset{-11}{0} \underset{-10}{0} \underset{-9}{0} \underset{-8}{0} \underset{-7}{0} \underset{-6}{0} \underset{-6}{0} \underset{-4}{0} \underset{-2}{0} \underset{-2}{0} \underset{-2}{2} .5$
0.000000000025 m

