\qquad
Module 2 Whole Number Operations
Lesson 5 Problem-solving Strategies

Guided

Set 1

Draw a Diagram to solve.

(1) Six teams are in a tournament. Each team plays every other team once. How many games are there?
Let six points represent the teams. Then, draw line segments so that each point is connected to every other point once. There are 15 line segments, so there are 15 games in the tournament.

15 games
2) A band has 50 musicians. Twenty-six can play the piano, 20 can play the flute, and nine can play both. How many band members can play neither piano nor flute?

13 play neither instrument.

Set 2

Make a List to solve.

How many four-digit numbers contain only two, only four, or both two and four?

2,222	2,422	4,444	4,244
2,224	2,424	4,442	4,242
2,242	2,442	4,424	4,224
2,244	2,444	4,422	4,222
$\mathbf{1 6}$ numbers			

2. Ben wrote all the numbers from one to 999 that had four in both the tens place and in the ones place. How many fours did Ben write?

$$
\begin{gathered}
44,144,244,344,444,544,644,744,844,944 \\
21 \text { fours }
\end{gathered}
$$

Set 3

Guess and Check to solve.

Use each of the digits one through nine at least once, and form three four-digit odd numbers with the sum of 5,959 .
If I pick $\mathbf{2 , 6 8 7}$ and $\mathbf{1 , 4 5 3}$, all the digits have been used except nine and the sum of the last two digits of the numbers ends in zero. Then, subtract that sum from 5,959 to get our third number, 1,819 , which has nine as the last digit. The three numbers are 2,687 ; 1,453 ; and 1,819 .

2,687
1,453
$5,959-(2,687+1,453)$

2,687
1,453
$\begin{array}{r}1,819 \\ \hline 5,959\end{array}$

Use any strategy to solve.

There were four teams in a volleyball tournament. Each team played two games with each of the other teams. How many games were played?
Make a list. Let the four teams be A, B, C, and D. Then, use the letters to make every possible combination of two. Each combination happens two times, so double the number of games.

Teams

A	B	C	D
	Games Played		
Al	AB	BC	BC
AC	AC	BD	BD
AD	AD	CD	CD

12 games

Alternate answer:
Draw a diagram. The drawing shows six games played between the teams A, B, C, and D. Double six, because each team played every other team twice.

6 games $\times 2$ 12 games

