Challenge Problems

Module 13 Perimeter, Area, and Volume
Lesson 6 Surface Area: Pyramids and Cones

Set 1

1) Explain why the slant height of a pyramid is always longer than the height of the pyramid. Then, explain why a pyramid's slant height is always shorter than the length of its lateral edge.
2) Find the surface area of the square pyramid.

Set 2

(1) Find the surface area of the cone.

Possible Answers

Set 1

1. A right triangle is formed with the pyramid height as a leg and the slant height as the hypotenuse. In a right triangle, the hypotenuse is always the longest side, so the slant height is always greater than the pyramid height. On a lateral face, a right triangle is formed with the slant height as a leg and a lateral edge as the hypotenuse. So, the lateral edge is always greater than the slant height.
2. Find the slant height. $l^{2}=(12 \mathrm{in} .)^{2}+\left(\frac{32 \mathrm{in} .}{2}\right)^{2}$

$$
=144 \mathrm{in}^{2}+256 \mathrm{in}^{2}{ }^{2}
$$

$$
=400 \text { in. }^{2}
$$

$$
l=20 \mathrm{in} .
$$

$$
\text { Find the surface area. } \quad \begin{aligned}
S A & =B+\frac{1}{2} P l \\
& =(32 \mathrm{in} .)^{2}+\frac{1}{2} \times(4 \times 32 \mathrm{in} .) \times 20 \mathrm{in} . \\
& =1,024 \mathrm{in}^{2}+1,280 \mathrm{in.}^{2} \\
& =2,304 \mathrm{in}^{2}
\end{aligned}
$$

The surface area is $\mathbf{2 , 3 0 4}$ square inches.

Set 2

1. Find the slant height. $l^{2}=(6 \mathrm{~m})^{2}+(8 \mathrm{~m})^{2}$

$$
\begin{aligned}
& =36 \mathrm{~m}^{2}+64 \mathrm{~m}^{2} \\
& =100 \mathrm{~m}^{2} \\
& l=10 \mathrm{~m}
\end{aligned}
$$

Find the surface area.

$$
\begin{aligned}
S A & =\pi r^{2}+\pi r l \\
& =3.14 \times(6 \mathrm{~m})^{2}+3.14 \times 6 \mathrm{~m} \times 10 \mathrm{~m} \\
& =113.04 \mathrm{~m}^{2}+188.4 \mathrm{~m}^{2} \\
& \approx 301.44 \mathrm{~m}^{2}
\end{aligned}
$$

The surface area is about $301.44 \mathrm{~m}^{2}$.

