\qquad
Module 11 Transformation of Shapes
Lesson 2 Rotations

Challenge Problems

Set 1

(1) A regular decagon is rotated about its center. Find all the angles of rotation for which the decagon will look like the original figure.

Set 2

(1) Use the point $(1,4)$ to show that a rotation of 180° about the origin is the same as a reflection across the x-axis followed by a reflection across the y-axis.

Possible Answers

Set 1

1. A decagon has 10 sides and 10 angles, and 360° divided by 10 is 36°. The decagon rotates onto itself every 36° for a total of ten times to get back to its original position. The angles of rotation are $36^{\circ}, \mathbf{7 2}^{\circ}, \mathbf{1 0 8}^{\circ}, \mathbf{1 4 4}^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{2 1 6}^{\circ}$, $252^{\circ}, \mathbf{2 8 8}^{\circ}, 324^{\circ}$, and 360°.

Set 2

1. To reflect over the x-axis, take the opposite of the y-coordinate. To reflect over the y-axis, take the opposite of the x-coordinate. Both coordinates are the opposite of what they were originally, which is the motion rule for rotating a figure 180° about the origin.

$$
\begin{aligned}
\text { Reflect over } x:(a, b) & \rightarrow(a,-b) \\
(1,4) & \rightarrow(1,-4) \\
\text { Reflect over } y:(a, b) & \rightarrow(-a, b) \\
(1,-4) & \rightarrow(-1,-4) \\
\text { Rotate } 180^{\circ}:(1,4) & \rightarrow(-1,-4)
\end{aligned}
$$

