# NAME

| Module 10 | Coordinate Geometry and Spatial Visualization |
|-----------|-----------------------------------------------|
| Lesson 3  | Coordinate Geometry                           |



Use the Pythagorean Theorem to find the distance from the origin to (4, 6). Give the answer in both exact form and approximate form.



Set 2

A line with a slope of zero passes through (4, -2) and (4, y). What is the value of y? Explain how you know.



A line passes through the point (-2, -3) and has a slope of one. Name two other points on the line. Explain how you found them.



2

Challenge

**Problems** 

10.3



Use slope to show that triangle *ABC* is a right triangle.



### NAME

| Module 10 | Coordinate Geometry and Spatial Visualization |
|-----------|-----------------------------------------------|
| Lesson 3  | Coordinate Geometry                           |

#### **Possible Answers**



### Set 2

- 1. If the slope is zero, the line must be horizontal; and therefore, the *y*-coordinates must be the same. Since the *x*-coordinates are identical (four) and the *y*-coordinates are also the same, the coordinate points define not a line but a single point. So, *y* must be -2.
- 2. A slope of one is the same as the fraction  $\frac{1}{1}$ . To get other points on the line, start at (-2, -3) and then rise one and run one. Two other points on the line are

(-1, -2) and (0, -1).



## Set 3

1. The slope of  $\overline{AB}$  is four. The slope of  $\overline{BC}$  is  $-\frac{1}{4}$ . The slope of  $\overline{AC}$  is  $\frac{2}{9}$ . A right triangle has one right angle, which is formed by perpendicular line segments.  $\overline{AB}$  and  $\overline{BC}$  are perpendicular because their slopes are opposite reciprocals. So,  $\triangle ABC$  is a right triangle.