Challenge Problems

10.2

Set 1

(1) A line segment has one endpoint at ($-4,3$). It passes through the point $(1,3)$, and its other endpoint is at $(7, y)$. What is the value of y ? Explain how you know.
2) Point A is at $(2,1)$, and point B is at $(4,2)$. Graph $\overrightarrow{A B}$. Does $\overrightarrow{A B}$ pass through the origin? Graph $\overrightarrow{B A}$. Does $\overrightarrow{B A}$ pass through the origin?

Set 2

(1) The vertices of an isosceles triangle are $(-4,1),(2,1)$, and $(x, 5)$. What is the value of x ? Explain how you know.

A parallelogram has vertices at $(0,0),(4,0)$, and $(1,5)$. What are the possible coordinates for the fourth vertex? (Hint: There are three possible vertices.)

Abstract

NAME Module 10 Coordinate Geometry and Spatial Visualization Lesson 2 Classifying Geometric Figures Using Points

Possible Answers

Set 1

1. If one endpoint is at $(-4,3)$ and the line segment passes through $(1,3)$, then the line segment is horizontal. The other endpoint must have a \boldsymbol{y}-coordinate of three just like all the other points on the segment.

2. $\overrightarrow{A B}$ starts at A, goes through B, and continues indefinitely in that direction. It does not pass through the origin. $\overrightarrow{B A}$ starts at B, goes through A, and continues indefinitely in that direction. If the ray is extended beyond the y-axis, it passes through the origin.

Set 2

1. The base of this triangle is a horizontal line segment. An isosceles triangle has two congruent sides. In order for the other two sides to be equal in length, the x-coordinate of that vertex must be the number that is halfway between the x-coordinates of the bottom vertices. Since it is six units from -4 to +2 , halfway is three units. So, the \boldsymbol{x}-coordinate of the top vertex is $\mathbf{- 1}$.

2. The possibilities for the fourth vertex are $(5,5),(-3,5)$ and $(3,-5)$.

