NAME

Module 9 Using Functions

Lesson 6 Evaluating Composite Functions

Evaluate.

1.
$$(f \circ g)(4)$$
 and $(g \circ f)(4)$

$$f(x) = -5x$$

$$g(x) = x + 6$$

$$\underline{(f \circ g)(4) = -50}$$

$$(g \circ f)(4) = -14$$

3.
$$(f \circ g)(2)$$
 and $(g \circ f)(2)$

$$f(x) = -x - 4$$

$$g(x) = x + 5$$

$$(f \circ g)(2) = -11$$

$$(g \circ f)(2) = -1$$

5.
$$(f \circ g)(0)$$
 and $(g \circ f)(0)$

$$f(x) = x^3$$

$$g(x) = x^2$$

$$(f \circ g)(0) = 0$$

$$(g \cdot f)(0) = 0$$

7.
$$(f \circ g)(-8)$$
 and $(g \circ f)(-8)$

$$f(x)=x^2-20$$

$$g(x) = 4$$

$$(f \circ g)(-8) = -4$$

$$(g \circ f)(-8) = 4$$

2.
$$(f \circ g)(-3)$$
 and $(g \circ f)(-3)$

$$f(x) = x + 6$$

$$g(x) = x - 1$$

$$(f \circ g)(-3) = 2$$

$$(g \circ f)(-3) = 2$$

4.
$$(f \circ g)(-6)$$
 and $(g \circ f)(-6)$

$$f(x) = x - 2$$

$$g(x) = x - 8$$

$$(f \cdot g)(-6) = -16$$

$$(g \circ f)(-6) = -16$$

6.
$$(f \circ g)(4)$$
 and $(g \circ f)(4)$

$$f(x) = 3x$$

$$g(x) = \frac{x}{x-3}$$

$$(f \circ g)(4) = 12$$

$$(g \circ f)(4) = \frac{4}{3}$$

8.
$$(f \circ g)(2)$$
 and $(g \circ f)(2)$

$$f(x) = \frac{3}{x-4}$$

$$g(x) = 2x$$

 $(f \cdot g)(2)$ is undefined

$$(g \circ f)(2) = -3$$

For each pair of functions, find f(g(x)) and g(f(x)).

9.
$$f(x) = -6x$$

$$g(x) = 3x$$

$$f(g(x)) = -18x$$

$$g(f(x)) = -18x$$

11.
$$f(x) = -x^2$$

$$g(x) = 2x$$

$$f(g(x)) = -4x^2$$

$$g(f(x)) = -2x^2$$

13.
$$f(x) = \frac{x+2}{x-2}$$

 $g(x) = 2$

f(g(x)) is undefined

$$g(f(x)) = 2$$

15.
$$f(x) = \frac{x}{3}$$
 $g(x) = 9x$

$$f(g(x)) = 3x$$

$$g(f(x)) = 3x$$

10.
$$f(x) = x - 1$$
 $g(x) = -5x$

$$f(g(x)) = -5x - 1$$

$$g(f(x)) = -5x + 5$$

12.
$$f(x) = -2\sqrt{x}$$

$$g(x) = 9x^2$$

$$f(g(x)) = -6x$$

$$g(f(x)) = 36x$$

14.
$$f(x) = 2x^2$$

$$g(x) = x + 3$$

$$f(g(x)) = 2x^2 + 12x + 18$$

$$g(f(x)) = 2x^2 + 3$$

16.
$$f(x) = 10$$

$$g(x) = \sqrt{x + 15}$$

$$f(g(x))=10$$

$$g(f(x))=5$$

Determine whether the given functions are inverse functions.

17.
$$f(x) = 4x + 3$$

$$g(x) = 4x - 3$$

$$f(g(x))=16x-9$$

$$g(f(x)) = 16x + 9$$

The functions are NOT inverses.

19.
$$f(x) = 4x + 8$$

 $g(x) = \frac{1}{4}x - 2$

$$f(g(x)) = x$$

$$g(f(x)) = x$$

The functions ARE inverses.

18.
$$f(x) = 3x$$
 $g(x) = \frac{x}{3}$

$$f(g(x)) = x$$

$$g(f(x)) = x$$

The functions ARE inverses.

20.
$$f(x) = -2x + 1$$

$$g(x)=2x-1$$

$$f(g(x)) = -4x + 3$$

$$g(f(x)) = -4x + 1$$

The functions are NOT inverses.

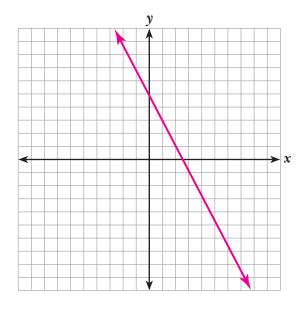
Journal

- **1.** A student claims that the composition of the functions f(x) = x + a and g(x) = x + b, where a and b are constants, is f(g(x)) = x + (b + a). Prove or disprove their theory.
- **2.** A manufacturer of big-screen TVs is offering a \$100 and 10% off. If *p* is the original price of the television, write composite functions showing the discounts taken in both orders. Which discount should a smart customer insist be applied first? Explain.
- **3.** A legislator wants to pass a bill in which a \$100 million budget is decreased by 10% each year for two years. The legislator believes this action will reduce the budget to \$80 million. Do you agree? Explain.
- **4.** In this lesson, the sale price of Lizzie's shoes was found using the composite function f(g(x)) = 0.32x, showing two successive discounts of 60% and 20%. Write a general rule to show a composite function that can be used to find the sale price of an item after successive discounts of m% and n%. Explain your steps.
- **5.** When is a composite function undefined? Give an example of functions f(x) and g(x) such that f(g(x)) is defined but g(f(x)) is not defined, in the real number system.

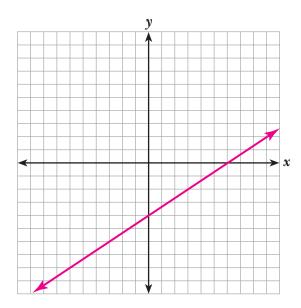
Cumulative Review

Graph each linear equation.

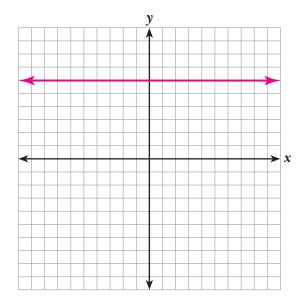
1.
$$y = -2x + 5$$



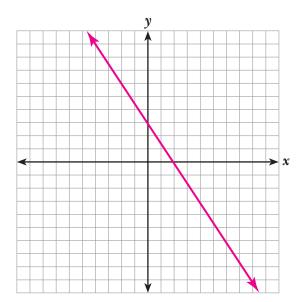
2.
$$y = \frac{2}{3}x - 4$$



3.
$$y = 6$$



4.
$$3x + 2y = 6$$



Solve.

5
$$2x + 4 = -4x + 4$$

$$x = 0$$

8.
$$\frac{1}{2}x - 8 = 5x + 1$$

9. $3x - 4 = 6x - 6$
 $x = \frac{2}{3}$
10. $3(-2x + 6) = -4x + 2$
 $x = 8$

$$x = -2$$

6.
$$3(x + 2) = 8x - 9$$

$$\mathbf{x} = 3$$

9.
$$3x - 4 = 6x - 6$$

$$x=\frac{2}{3}$$

5.
$$2x + 4 = -4x + 4$$
 6. $3(x + 2) = 8x - 9$ **7.** $-x + 4 = -2x + 10$

$$x = 6$$

10.
$$3(-2x + 6) = -4x + 2$$

$$x = 8$$

Possible Journal Response

- 1. The student is correct. Using x + b to evaluate f(x) = x + a gives f(x + b) = (x + b) + a. According to the Associative Property, (x + b) + a is equal to x + (b + a).
- 2. If g(p) shows the \$100 discount, and f(p) shows the 10% discount, then f(g(p)) = 0.1(p-100)= 0.1p - 10 and g(f(p)) = 0.1p - 100. No matter what p is, g(f(p)) is always less than f(g(p))by \$90. The smart customer will insist that the 10% discount be taken first.
- 3. The bill should be carefully worded. Reducing the budget by 10% the first year results in 0.9(\$100 million) = \$90 million. Reducing the budget by 10% of that amount in the following year results in 0.9(\$90 million) = \$81 million, and the budget is reduced by only 19%.
- 4. To write the general rule, first express each discount as a fraction. An m% discount means $\frac{100-m}{100}$ of the original price is being paid. A n% discount means $\frac{100-n}{100}$ of the original price is being paid. To compose the functions, find the product. The sale price of the item after both discounts are applied is $\left|\frac{100-m}{100}\right| \left|\frac{100-n}{100}\right|$
- 5. A composite function is undefined when the "inner" function produces an output that is not valid in the "outer" function. For example, if f(x) = -10 and $g(x) = \sqrt{x}$, then $g(f(x)) = \sqrt{-10}$ which is undefined. f(g(x)) = -10.

monotype composition_