NAME

- **Using Functions** Module 9
- Writing Functions from Patterns Lesson 3

independent practice

For each table, write a function to represent the pattern shown.

Output 1. Input 0 -3 1 -2 2 -1 3 0 4 1

f(x)=x-3

4.	Input	Output	
	-9	-4.5	
	-6	-3	
	2	1	
	3	1.5	
	8	4	

 $f(x) = 0.5x \text{ or } f(x) = \frac{1}{2}x$ f(x) = 100x + 2

Input	Output
-4	54
-2	52
1	49
4	46
6	44
	-4 -2 1 4

f(x)=50-x

Module 9 Lesson 3

Input Output 2. 0 -6 2 -4 -3 3 0 6 2 8

f(x) = x + 6

5.	Input	Output	
	0	2	
	1	102	
	2	202	
	3	302	
	4	402	

8.	Input	Output
	1	5
	2	7
	3	9
	4	11
	5	13

f(x)=2x+3

3.	Input	Output
	-3	9
	-1	3
	0	0
	1	-3
	2	-6
	2	U

f(x) = -3x

6.	Input	Output
	-5	0
	-3	0
	0	0
	1	0
	3	0

f(x)=0

9.	Input	Output
	-3	-10
	-2	-7
	-1	-4
	3	8
	4	11

$$f(x)=3x-1$$

Independent Practice

DIGITAL

For each table, write a function to represent the pattern shown. Then use the function to complete the table.

 $f(x) = -x^2$

f(x) = x + 3

f(x)=-2x+4

Journal

- **1.** A student looked at a table of values and noticed that the ordered pair (1, 1) was an ordered pair in the function. She believes that the function being described in the table is f(x) = x. Is she correct? Explain.
- 2. Explain how to use slope to determine whether a function is a linear function.
- **3.** In a linear function, why is it especially helpful to have 0 as one of the *x*-values in the table? How does it make writing the linear function easier?
- **4.** Explain how a scatterplot can help determine the function represented in a table of values.
- 5. The directions for the exercises in this lesson read, "Write a function for the input/output table." Could the directions be written as, "Write the function for the input/output table?" Why or why not?

© 2003 BestQuest

Module 9 Lesson 3

monotype composition

DIGITAL

Cumulative Review

Identify the slope and y-intercept of each line.

© 2003 BestQuest

For each exercise, write the equation of the line in slope-intercept form.

7. slope: 2 y-intercept: (0, -3)
y = 2x - 3 8. slope: $\frac{2}{3}$ *y*-intercept: (0, 4) $y = \frac{2}{3}x + 4$

9. passing through (–2, 3) and (2, 1)

 $y=-\frac{1}{2}x+2$

10. passing through (3, 5) and parallel to the line y = -x + 4

, ,	2^	1	

 $\underline{y} = -x + 8$

Possible Journal Responses

- 1. The student may be correct. However, there are many functions containing the ordered pair (1, 1). She should check the remaining ordered pairs to determine whether the function f(x) = x is true for them as well.
- 2. If a function is linear, the slope between any two ordered pairs will be constant. To verify that a function is linear, find the slope using several different pairs of points.
- 3. The ordered pair whose first element, or x-value, is 0 shows the y-intercept of the line. Once you have the y-intercept, to write the equation of the line, find the slope.
- 4. A scatterplot helps to determine what type of equation represents the function. If the points lie in a line, the equation is linear. If they form a curve, the equation may be quadratic. If they form a V-shaped pattern, the function uses an absolute value operation.
- 5. No, the input/output values may satisfy more than one function.

BestQuest			
© 2003			

Module 9 Lesson 3