NAME

Module 9 Using Functions
Lesson 3 Writing Functions from Patterns

For each table, write a function to represent the pattern shown.
1.

Input	Output
0	-3
1	-2
2	-1
3	0
4	1

$f(x)=x-3$
4.

Input Output -9 -4.5 -6 -3 2 1 3 1.5 8 4
$\boldsymbol{f}(\mathbf{x})=0.5 x$ or $f(x)=\frac{1}{2} x$

7.

Input	Output
-4	54
-2	52
1	49
4	46
6	44

$f(x)=50-x$
2.

Input	Output
-6	0
-4	2
-3	3
0	6
2	8

$$
f(x)=x+6
$$

5. | Input | Output |
| :---: | :---: |
| 0 | 2 |
| 1 | 102 |
| 2 | 202 |
| 3 | 302 |
| 4 | 402 |

$f(x)=100 x+2$

8. | Input | Output |
| :---: | :---: |
| 1 | 5 |
| 2 | 7 |
| 3 | 9 |
| 4 | 11 |
| 5 | 13 |

$f(x)=2 x+3$
3.

Input	Output
-3	9
-1	3
0	0
1	-3
2	-6

$f(x)=-3 x$
6.

Input	Output
-5	0
-3	0
0	0
1	0
3	0

$$
f(x)=0
$$

9.

Input	Output
-3	-10
-2	-7
-1	-4
3	8
4	11

$$
f(x)=3 x-1
$$

For each table, write a function to represent the pattern shown. Then use the function to complete the table.
10.

Input	Output
-4	$-\frac{3}{4}$
-2	$-\frac{1}{4}$
0	$\frac{1}{4}$
1	$\frac{1}{2}$
3	1

11.

Input	Output
-3	-8
-2	-8
0	-8
1	-8
2	-8
4	-8

$$
f(x)=\frac{1}{4} x+\frac{1}{4}
$$

13.

Input	Output
-2	-4
-1	-1
0	0
1	-1
2	-4
4	-16

$f(x)=-x^{2}$
12.

Input	Output
-4	7
-3	6
-2	5
-1	4
0	3
2	1

$$
f(x)=-x+3
$$

15.

Input	Output
-5	14
-2	8
0	4
2	0
5	-6
10	-16

$f(x)=-2 x+4$

Journal

1. A student looked at a table of values and noticed that the ordered pair $(1,1)$ was an ordered pair in the function. She believes that the function being described in the table is $f(x)=x$. Is she correct? Explain.
2. Explain how to use slope to determine whether a function is a linear function.
3. In a linear function, why is it especially helpful to have 0 as one of the x-values in the table? How does it make writing the linear function easier?
4. Explain how a scatterplot can help determine the function represented in a table of values.
5. The directions for the exercises in this lesson read, "Write a function for the input/output table." Could the directions be written as, "Write the function for the input/output table?" Why or why not?

Cumulative Review

Identify the slope and y-intercept of each line.

slope: 1
y-intercept: $(0,0)$
3.

slope: 0
y-intercept: $(0,3)$

slope: 2
y-intercept: $(0,1)$
4.

slope: - $\underline{-3}$
y-intercept: ($0,-2$)

slope: undefined
y-intercept: none
6.

slope: $-\frac{2}{3}$
y-intercept: $(0,3)$

For each exercise, write the equation of the line in slope-intercept form.
7. slope: 2
y-intercept: ($0,-3$)

$$
y=2 x-3
$$

9. passing through $(-2,3)$ and $(2,1)$

$$
y=-\frac{1}{2} x+2
$$

8. slope: $\frac{2}{3}$
y-intercept: $(0,4)$
$y=\frac{2}{3} x+4$
9. passing through $(3,5)$ and parallel to the line $y=-x+4$
$y=-x+8$

Possible Journal Responses

1. The student may be correct. However, there are many functions containing the ordered pair $(1,1)$. She should check the remaining ordered pairs to determine whether the function $f(x)=x$ is true for them as well.
2. If a function is linear, the slope between any two ordered pairs will be constant. To verify that a function is linear, find the slope using several different pairs of points.
3. The ordered pair whose first element, or x-value, is 0 shows the y-intercept of the line. Once you have the y-intercept, to write the equation of the line, find the slope.
4. A scatterplot helps to determine what type of equation represents the function. If the points lie in a line, the equation is linear. If they form a curve, the equation may be quadratic. If they form a V-shaped pattern, the function uses an absolute value operation.
5. No, the input/output values may satisfy more than one function.
