NAME

Module 9 Using Functions
Lesson 1 Defining Relations and Functions

Find the domain and range of each relation.

1. $Q=\{(3,4),(-4,1),(2,5),(-4,1),(0,0)\}$
Domain $=\{-4,0,2,3\}$
Range $=\{0,1,4,5\}$
2. $F=\{(-4,0),(-3,-2),(1,0),(2,1),(1,2)\}$
Domain $=\{-4,-3,1,2\}$
Range $=\{-2,0,1,2\}$
3.

x	y		
-2	3		
-1	1		
3	3		
4	-2		
:---		Domain $=\{-2,-1,3,4\}$	
:---			

4.

x	y
-5	5
0	4
0	5
1	4

Domain $=\{-5,0,1\}$
Range $=\{4,5\}$

Graph on the coordinate plane the relation represented by each mapping diagram. Then, name the domain and range of each relation.
5.

$$
\begin{aligned}
& \text { Domain }=\{-2,-1,1,4\} \\
& \text { Range }=\{0,3,5,6\}
\end{aligned}
$$

6.

Domain $=\{-5,1,2,4\}$
$\underline{\text { Range }=\{-3,0,2,5\}}$

Find the domain and range of each function.
7. $y=-x^{2}+2$

Domain $=\Re$; Range $=\{y: y \leq 2\}$
8. $y=x^{3}$

Domain $=\mathfrak{R}$; Range $=\mathfrak{R}$
9. $y=x-2$

$\underline{\text { Domain }=\Re ; ~ R a n g e ~}=\mathfrak{R}$
10. $y=|x|-4$

$$
\text { Domain }=\Re ; \text { Range }=\{y: y \geq-4\}
$$

Determine whether each graph represents a function. Explain.

The graph represents a function. No two ordered pairs have the same first element.

Possible Journal Response

1. The oven is like a function machine in that it produces an output (cake) from an input (gooey substance). However, the same input can produce many different outputs. For example, one batter may produce a delicious cake while an identical batter produces a burnt cake, which is not a function.
2. Look at the arrows showing the mappings. If the relation is a function, no element in the "input" column should have more than one arrow coming out of it.
3. There can be no more than n elements in the range. Otherwise, at least one element of the domain would have to map to more than one element of the range.

The graph does not represent a function.
The graph fails the vertical line test.
14.

The graph represents a function. The
graph passes the vertical line test.

Journal

1. In the lesson introduction, Frogan compared the oven to a function machine. What did he mean? After studying functions, do you agree with Mr. Frogan? Explain.
2. Explain how you can tell whether a relation represented by a mapping diagram is a function.
3. Suppose that a function has n elements in its domain. What do you know about the number of elements in the range? Explain.
4. Explain the theory behind the vertical line test. Why is the test effective in determining whether a graph represents a function?
5. Is every line a function? Explain.

Cumulative Review

Evaluate each expression for the given value(s) of the variable(s).

1. $a-9$ if $a=3-6$
2. $r^{2}-4 r$ if $r=-5 \underline{45}$
3. $\frac{n}{4}+3 n^{2}-\frac{1}{4} n$ if $n=575$
4. $\sqrt[3]{3 t}-\sqrt{t}$ if $t=9 \underline{0}$
5. $-2|h-7|+h^{3} j-3 j$ if $h=-2$ and $j=-3$

15
Possible Journal Response (continued)
4. If a vertical line passes through a graph more than once, the graph does not represent a function. Since any two points on a vertical line have the same x-coordinate, having more than one point of intersection indicates that an element of the domain (x-coordinate) maps to more than one element of the range (y-coordinate).
5. No. Vertical lines do not represent functions, since each point on a vertical line has the same x-coordinate. However, all nonvertical lines represent functions.
Module 9 Lesson 1
108

