NAME

Module 8 Writing Linear Equations of Two Variables
Lesson 4 Solving Linear Equations in Two Variables When Parameters Are Changed

Given each equation, determine the resulting equation when the parameters are changed as indicated. Write the new equation in slope-intercept form.

1. $y=\frac{1}{3} x-3$
increase slope by 1
$y=\frac{4}{3} x-3$
2. $y=-2 x+1$
increase y-intercept by 3
$y=-2 x+4$
3. $y=-\frac{3}{4} x+2$
decrease y-intercept by 2
$y=-\frac{3}{4} x+0$
4. $y=-x+\frac{5}{4}$
increase slope by -6
$y=-7 x+\frac{5}{4}$
5. $y=\frac{6}{5} x+\frac{1}{5}$
decrease y-intercept by $\frac{2}{5}$
$y=\frac{6}{5} x-\frac{1}{5}$
6. $y=\frac{7}{3} x-1$
increase slope by 2
$y=\frac{13}{3} x-1$
7. $y=-\frac{6}{7} x-2$
decrease y-intercept by 2
$y=-\frac{6}{7} x-4$
8. $y=x+\frac{2}{5}$
decrease slope by 2
$y=-x+\frac{2}{5}$
9. $y=-\frac{5}{2} x+6$
decrease y-intercept by 4
$y=-\frac{5}{2} x+2$
10. $y=x-3$
decrease slope by $\frac{2}{3}$
$y=\frac{1}{3} x-3$
11. $y=\frac{2}{3} x-\frac{1}{4}$
multiply slope by 2
$y=\frac{4}{3} x-\frac{1}{4}$
12. $y=-\frac{1}{4} x-5$
decrease y-intercept by $\frac{1}{2}$
$y=-\frac{1}{4} x-5 \frac{1}{2}$
13. $y=-\frac{4}{3} x-3$
increase slope by $\frac{5}{3}$
$y=\frac{1}{3} x-3$
14. $y=-3 x-8$
multiply slope by $\frac{1}{4}$
$y=-\frac{3}{4} x-8$
15. $y=-\frac{2}{7} x+9$
decrease y-intercept by 5
$y=-\frac{2}{7} x+4$
16. $y=-\frac{5}{2} x-1$
multiply the slope by $\frac{3}{2}$
$y=-\frac{15}{4} x-1$

In slope-intercept form, write the equation of the line described:

17. The line with the same y-intercept and the opposite slope as the line $3 x-y=5$.
$y=-3 x-5$
18. The line with the same slope and the opposite y-intercept as the line $5 y+3 x=2$.
$y=-\frac{3}{5} x-\frac{2}{5}$
19. The line with the same slope and the opposite y-intercept as the line $4 y-2 x=8$.
$y=\frac{1}{2} x-2$
20. The line with the same y-intercept and the opposite slope as the line $9 x-2 y+4=7$. $y=-\frac{9}{2} x-\frac{3}{2}$

Journal

1. Compare the graphs of two lines that have the same slope but opposite y-intercepts.
2. Explain how the graph of an equation with a negative value for the b parameter differs from the graph of an equation with a positive value for the b parameter.
3. Explain how a line with a negative slope differs from a line with a positive slope.
4. Explain how increasing the b parameter by 4 changes the graph of an equation.
5. Explain how decreasing a negative slope by 10 affects a line.

Cumulative Review

Identify the Property of Equality illustrated.

1. $5 x+2=5 x+2$
2. If $3 y=4 x$, then $4 x=3 y$

Reflexive Property
3. If $x=y$ and $y=z$, then $x=z$

Transitive Property
5. If $3 x=4 y+1$, then $6(3 x)=6(4 y+1)$

Multiplication Property
7. If $y-2=x$, then $y=x+2$

Addition Property
9. If $4 x=8 y$ and $2 y=x$, then $4 x+2 y=8 y+x$

Addition Property

Symmetric Property
4. If $8 x=10 y$, then $\frac{8}{2} x=\frac{10}{2} y$

Division Property or Multiplication Property
6. If $x+4=y$, then $x=y-4$

Subtraction Property or Addition Property
8. $4(2 a+3 b)=8 a+12 b$

Distributive Property
10. $(3 m+2 n)+4 p=3 m+(2 n+4 p)$

Associative Property

Possible Journal Response

1. Since the lines have the same slope, they are parallel. The lines intersect the y-axis at points that are equidistant from the origin because their y-intercepts are opposites.
2. The line with a negative b parameter has a negative y-intercept, meaning it intersects the y-axis below the origin. The line with a positive b parameter has a positive y-intercept, so it intersects the y-axis above the origin.
3. A line with a negative slope rises right to left. A line with a positive slope rises left to right.
4. Since the slope does not change, the line would be parallel to the original line. The new line would be 4 units higher than the original line.
5. A decrease of 10 to a negative slope would make the new line steeper than the original line and rise right to left as the original line does.
Module 8 Lesson 4
88
