NAME

Module 8 Writing Linear Equations of Two Variables
 Lesson 2 Writing Equations of Lines, Given the Slope and y-Intercept

independent
 practice

Use the given information to write an equation of the line in slope-intercept form.

1. Slope: $\frac{4}{3} \quad y$-intercept: 2
$y=\frac{4}{3} x+2$
2. Slope: $\frac{2}{11} \quad y$-intercept: 10
$y=\frac{2}{11}^{11} x+10$
3. Slope: 0 Passes through: $(-4,2)$
$y=2$
4. Slope: $-\frac{3}{7} \quad y$-intercept: -2
$y=-\frac{3}{7} x-2$
5. Slope: -6 y-intercept: 2
$y=-6 x+2$
6. Slope: $\frac{4}{7} y$-intercept: -7
$y=\frac{4}{7} x-7$
7. Slope: $-\frac{1}{3} \quad y$-intercept: -1
$y=-\frac{1}{3} x-1$
8. Slope: $-\frac{1}{4} \quad y$-intercept: 6
$y=-\frac{1}{4} x+6$
9. Slope: $\frac{6}{7} \quad y$-intercept: -7
$y=\frac{6}{7} x-7$
10. Slope: undefined Passes through: $(9,1)$
$x=9$
11. Slope: $\frac{4}{3} \quad y$-intercept: 3
$y=\frac{4}{3} x+3$
12. Slope: $\frac{5}{2} y$-intercept: -4
$y=\frac{5}{2} x-4$

Write the slope-intercept form of the equation of the line described.

13. The line is parallel to the line $y=-\frac{1}{2} x+4$ and passes through the point $(0,-3)$.
$y=-\frac{1}{2} x-3$
14. The line is perpendicular to the line $y=-\frac{2}{3} x-8$ and passes through the origin.

$$
y=\frac{3}{2} x
$$

17. The line is perpendicular to the line $y=3 x-1$ and passes through the point $(0,-6)$.

$$
y=-\frac{1}{3} x-6
$$

14. The line is perpendicular to the line $y=-4 x-2$ and passes through the point (0,4).
$y=\frac{1}{4} x+4$
15. The line is parallel to the line $y=-\frac{1}{5} x$ and passes through the point $(0,-1)$.
$y=-\frac{1}{5} x-1$
16. The line is parallel to the line $y=\frac{1}{4} x+1$ and passes through the point $(0,-1)$.
$y=\frac{1}{4} x-1$
17. The line is perpendicular to the line $y=\frac{6}{5} x+2$ and passes through the point $(0,3)$. $y=-\frac{5}{6} x+3$
18. The line is parallel to the line $y=-9 x+2$ and passes through the point $(0,-7)$.

$$
y=-9 x-7
$$

Journal

1. An iceberg is 50 feet high and melts at a rate so that its height decreases 5 feet each year. Write a linear equation that can be used to find the height of the iceberg at any time. Explain why the equation is correct and include slope and y-intercept in the explanation.
2. Explain how to convert $4 x+2 y=6$ into slope-intercept form.
3. Explain the relationship between the graphs of the two equations $y=3 x-1$ and $-2 y=-6 x+2$.
4. From the graph of a line, explain how the linear equation of the line in slope-intercept form can be determined.
5. Explain how to graph a line with a slope of 0 and a y-intercept of 0 .

Cumulative Review

Solve each equation for \mathbf{x}.

1. $y=x+1$
$x=y-1$
2. $y=-x+14$
$x=-y+14$
3. $y=12-6 x$
$x=-\frac{1}{6} y+2$
4. $y=4 x-16$
$x=\frac{1}{4} y+4$
5. $y=2 x+1$
$x=\frac{1}{2} y-\frac{1}{2}$
6. $y=-\frac{1}{3} x-2$
$x=-3 y-6$
7. $y=\frac{1}{5} x-3$
$x=5 y+15$
8. $y=\frac{5}{2} x-\frac{5}{3}$
$x=\frac{2}{5} y+\frac{2}{3}$
9. $y=\frac{1}{4} x^{2}$
$x= \pm 2 \sqrt{y}$
10. $y=3 x+7 s-3 t+2$
$x=\frac{1}{3} y-\frac{7}{3} s+t-\frac{2}{3}$

Possible Journal Response

1. The rate of change is the slope. Since the height of the iceberg is decreasing at a rate of 5 feet per year, the slope is $\mathbf{- 5}$. The y-intercept is the initial height of the iceberg, or 50 . So the linear equation is $y=-5 x+50$, with $x=$ the number of years that have elapsed and $y=$ the height of the iceberg in feet.
2. Slope-intercept form is $y=m x+b$, where m is the slope and b is the y-intercept. The goal is to isolate y. Starting with $4 x+2 y=6$, subtract $4 x$ from both sides to get $2 y=-4 x+6$. Then divide each side by 2 to get $y=-2 x+3$.
3. If the second equation is written in slope-intercept form, it is the same as the first equation. So the equations are equivalent and have the same graph.
4. First, find the y-intercept. Next, use two points to determine the slope m. The slope m is $\frac{\text { rise }}{\text { run }}$. Substitute the slope m and the y-intercept b into $y=m x+b$.
5. If the slope is 0 , the equation is $y=0 x+b$, or $y=b$. Its graph is a horizontal line through the point ($0, b$). If the y-intercept is 0 , then $b=0$ and the graph goes through the origin. When both the slope and y-intercept are 0 , the graph is the x-axis.
