NAME

Module 7	Solving Linear Equations and
	Inequalities of Two Variables
Lesson 1	Defining Linear Equations of Two
	Variables and Their Solutions

Graph the following ordered pairs.

Module 7 Lesson 1

2. (1, 6), (2, -2), (4, 0)

4. (-3, 1), (3, 4), (3, -8)

Independent Practice

monotype composition

5

Graph the following equations.

Find the solution to each equation for the given value of the variable.

7. 4x + 2y = 22 when x = 28. y - 3x = 14 when y = 2(2, 7)(-4, 2)9. 2x + 8y = 2 when y = -310. 3x - y = -1 when x = -2(13, -3)(-2, -5)

Find three solutions to each of the following linear equations. Possible answers are given.

11.	6x - y = 6	12.	y - 3x = 1
	(0, -6), (1, 0), (2, 6)		(0, 1), (2, 7), (1, 4)
13.	x + y = 10	14.	3x - 5y = 15
	(0, 10), (10, 0), (3, 7)		(0, -3), (5, 0), (10, 3)
15.	y-2x=-4	16.	5x + 5y = 15
	(0, -4), (2, 0), (1, -2)		(0, 3), (3, 0), (4, -1)

© 2003 BestQuest

monotype composition

Module 7 Lesson 1

Independent Practice

DIGITAL

Find the solutions to the equations for the given value of the variables. Then graph those solutions.

- **17.** 2x y = 3when y = -3 and when x = 5
 - (0, -3) and (5, 7)

- **19.** 7x + y = 11when x = 1 and when y = -3
 - (1, 4) and (2, -3)

18. 4y + 3x = -1when x = 5 and when y = 2

(5, -4) and (-3, 2)

(-6, -3) and (-1, -1)

Module 7 Lesson 1

Independent Practice

Journal

- 1. Explain how a letter-number can be used to find a location on a map.
- 2. Explain why a linear equation of two variables has an infinite number of solutions.
- **3.** Explain how to graph the point $\left(-2\frac{1}{3}, 5\frac{5}{6}\right)$.
- **4.** Explain how to graph the solution set of the equation x + y = 8.
- **5.** Explain why the graph of the equation y = -4 is a horizontal line.

Cumulative Review

Solve for x.

1.	$x^2 = 4$	2. $x^2 + 3 = 4$
	$x = \pm 2$	$x = \pm 1$
3.	$x^3 - 4 = 4$	4. $x + 4 = 13x$
	<u>x = 2</u>	$x = \frac{1}{3}$
5.	$x^2 + 30 = 2x^2 + 5$	6. $2^2 - x^3 = -23$
	$x = \pm 5$	<u>x = 3</u>
7.	14 + 4x = 22	8. $\sqrt[3]{x} = 5$
	<u>x = 2</u>	<u>x = 125</u>
9.	$x^4 - 7 = -6$	10. $x + 4 = 4x - 11$
	$\mathbf{x} = \pm 1$	x = 5

Possible Journal Responses

- 1. Many maps have letters of the alphabet listed on the side and numbers written across the top or bottom. Any location can be found, given the correct letter-number pair. For instance, to find the location described by (E, 4), find the row indicated by E and the column indicated by four. The rectangle contained in that row and that column contains the desired location.
- 2. There are an infinite number of different values that can be substituted for either variable in a linear equation. For each different value that is substituted, a different ordered pair solution is obtained.
- 3. Begin at the origin. Trace two and one-third units to the left. Then trace five and five-sixths units up. Plot the point.
- 4. One way to graph the solution set of the equation x + y = 8 is to let x equal zero and solve the equation for y to get the point (0, 8). Then, let y equal zero, and solve for x to get the point (8, 0). Another point can be found by letting x equal 4. Solve the equation for y to get the point (4, 4). Plot the 3 points. The line that passes through these points represents the solution set of the equation.
- 5. All points that satisfy the equation y = -4 are four units below the x-axis. When these points are connected, they form a horizontal line.

Module 7 Lesson 1

Independent Practice

^{© 2003} BestQuest