DIGITAL

IAME		
Module 6	Solving Absolute Value Equation	is and independent
Lesson 4	Solving Inequalities Using "Abso Value is Greater Than"	lute practice
Solve each in	equality and graph the solution set.	
1. v > 1.5	v > 1.5 or v < -1.5	2. $\left \frac{r}{3}\right > -2$ <u>R</u>
-5 -4	-3 -2 -1 0 1 2 3 4 5	-5 -4 -3 -2 -1 0 1 2 3 4 5
3. <i>d</i> - 2.75	≥ 3 <u>d ≥ 5.75 or d ≤ -0.25</u>	4. $ 2t - 4 \ge 6$ <u>$t \ge 5$ or $t \le -1$</u>
-2 -1	o 0 1 2 3 4 5 6 7 8	-2 -1 0 1 2 3 4 5 6 7 8
5. $\left 4 + \frac{w}{2} \right >$	1 <u>w > -6 or w < -10</u>	6. $ z - 5 \ge -3$ <u>$z \ge 2$ or $z \le -2$</u>
-12-11		-5 -4 -3 -2 -1 0 1 2 3 4 5
7. $\frac{ 9w }{3} > 12$	w > 4 or w < -4	8. 4 2q + 1 > 0 <u>q ≠ −0.5</u>
-5 -4	-3 -2 -1 0 1 2 3 4 5	-5 -4 -3 -2 -1 0 1 2 3 4 5
Match the gra	aph to the correct inequality.	
9 8 -7	-6 -5 -4 -3 -2 -1 0 1 2	10. $-5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5$
A. $\left w + \frac{3}{2} \right $	> 1	A. $ 2y + 4 < 9$
$\mathbf{B} \left \frac{w+3}{2} \right \geq 1$	> 1	B. $ 2y + 4 > 9$
C. <i>w</i> + 6	> 1	(c) $ 2y + 4 > -9$
D. 3w + 2	> 1	D. $ 2y + 4 < -9$
Possible Jour	nai kesponses	

Œ

1. The absolute value of an expression is always greater than or equal to zero (non-negative). So $|2g + 1| \ge 0$ is true for every value of g. |2g + 1| > 0, however, is not true when |2g + 1| = 0; that is, when g = -0.5.

Module 6 Lesson 4

Independent Practice

- **1.** Why is the inequality $|2g + 1| \ge 0$ true for all real numbers while |2g + 1| > 0 is not?
- 2. Write an absolute value inequality using "greater than" whose solution is graphed below. Explain how you found your answer.

- 3. Write a word problem whose solution set is represented by the graph in Journal question 2.
- **4.** Explain the similarities and differences in the solution and graph of |3m| > 12 and |3m| > 12.
- **5.** Find and explain the error in the following:

2 <i>m</i>	- 3	> 5
2m - 3 > 5	or	2m - 3 < -5
2m - 3 + 3 > 5 + 3	or	2m - 3 + 3 < -5 + 3
2m > 8	or	2m < -2
$\frac{2m}{2} > \frac{8}{2}$	or	$\frac{2m}{2} < \frac{-2}{2}$
m > 4	or	m < -1

Cumulative Review

Identify each number as a real number, rational number, integer, whole number, or natural number. You may have more than one answer for each number.

1.	0 real, rational,	2. –5 real, rational,	3 . √7 <mark>real</mark>	4. $\frac{3}{4}$ real, rational
	integer, whole	integer		
5.	$-\frac{3}{4}$ real, rational	6. 1,345,789 <u>real,</u> rational, integer,	7. $\frac{10}{5}$ real, rational, integer, whole,	8. π <mark>real</mark>
		whole, natural	natural	
9.	20.24563 real, rational	10. 0.3 real, rational		

Possible Journal Responses (continued)

- 2. Looking at the graph, notice that the distance between -2 and -4 is 2. This gives the absolute value of some expression is less than 1 (1 is half of 2). The number -3 is exactly between -2 and -4. This means the graph is translated 3 units to the left of the origin. The inequality |x + 3| > 1 satisfies the solution set. 3. A chemist needs to keep a solution at a temperature that is no more than 1 degree from -3°.
- 4. The inequality |3m| > 12 is the same as the disjunction m > 4 or m < -4. The inequality |3m| < 12 is the
- 2003 BestQuest same as the conjunction m < 4 and m > -4. The disjunction consists of the numbers greater than 4 or less than -4. The conjunction consists of the numbers between -4 and 4.
- 5. The inequality |2m| 3 > 5 is equivalent to the inequality |2m| > 8. This translates into the disjunction

2m > 8 or 2m < -8, not 2m > 8 or 2m < -2. 0

Module 6 Lesson 4