NAME

Module 6 Solving Absolute Value Equations and Inequalities
Lesson 4 Solving Inequalities Using "Absolute Value is Greater Than"

Solve each inequality and graph the solution set.

1. $|v|>1.5 \underline{v}>1.5$ or $v<-1.5$

2. $\left|\frac{r}{3}\right|>-2 \xrightarrow{\Re}$

3. $|d-2.75| \geq 3 \quad d \geq 5.75$ or $d \leq-0.25$

4. $|2 t-4| \geq 6 \quad t \geq 5$ or $t \leq-1$

5. $\left|4+\frac{w}{2}\right|>1 \quad \underline{w}>-6$ or $w<-10$

6. $|z|-5 \geq-3 \quad z \geq 2$ or $z \leq-2$

7. $\frac{|9 w|}{3}>12 \underline{w}>4$ or $w<-4$

8. $4|2 q+1|>0 \quad q \neq-0.5$

Match the graph to the correct inequality.

10.

A. $|2 y+4|<9$
(B. $\left|\frac{w+3}{2}\right|>1$
B. $|2 y+4|>9$
C. $|w+6|>1$
C. $|2 y+4|>-9$
D. $|3 w+2|>1$
D. $|2 y+4|<-9$

Possible Journal Responses

1. The absolute value of an expression is always greater than or equal to zero (non-negative). So $|2 g+1| \geq 0$ is true for every value of g. $|2 g+1|>0$, however, is not true when $|2 g+1|=0$; that is, when $g=-0.5$.
Module 6 Lesson 4

Journal

1. Why is the inequality $|2 g+1| \geq 0$ true for all real numbers while $|2 g+1|>0$ is not?
2. Write an absolute value inequality using "greater than" whose solution is graphed below. Explain how you found your answer.

3. Write a word problem whose solution set is represented by the graph in Journal question 2.
4. Explain the similarities and differences in the solution and graph of $|3 m|>12$ and $|3 m|>12$.
5. Find and explain the error in the following:

\[

\]

Cumulative Review

Identify each number as a real number, rational number, integer, whole number, or natural number. You may have more than one answer for each number.

1. 0 real, rational, integer, whole
\qquad
2. -5 real, rational,
3. $\sqrt{7}$ real
4. $\frac{3}{4} \xlongequal{\text { real, rational }}$ integer
5. $-\frac{3}{4}$ real, rational
6. 1,345,789 real,
7. $\frac{10}{5}$ real, rational, rational, integer,
whole, natural
integer, whole,
8. π real
\qquad natural \qquad
9. 20.24563 real,
10. 0.3 real, rational rational

Possible Journal Responses (continued)
2. Looking at the graph, notice that the distance between -2 and -4 is 2 . This gives the absolute value of some expression is less than 1 (1 is half of 2). The number -3 is exactly between -2 and -4 . This means the graph is translated 3 units to the left of the origin. The inequality $|x+3|>1$ satisfies the solution set.
3. A chemist needs to keep a solution at a temperature that is no more than 1 degree from -3°.
4. The inequality $|3 m|>12$ is the same as the disjunction $m>4$ or $m<-4$. The inequality $|3 m|<12$ is the same as the conjunction $m<4$ and $m>-4$. The disjunction consists of the numbers greater than 4 or less than -4 . The conjunction consists of the numbers between -4 and 4 .
5. The inequality $|2 m|-3>5$ is equivalent to the inequality $|2 m|>8$. This translates into the disjunction $2 m>8$ or $2 m<-8$, not $2 m>8$ or $2 m<-2$.

