NAME

Module 5 Solving Linear Inequalities of One Variable
Lesson 4 Solving Multi-Step Linear Inequalities

Solve and graph.

1. $3 x-12>9 x \underline{x}<-2$

2. $-5 x-4 \geq-3 x \quad x \leq-2$

3. $2 x-8 \geq-2 x \quad x \geq 2$

4. $5 x-7 \geq-2 x+7 \quad x \geq 2$

5. $-2 x-3>-5 x+9 \underline{x>4}$

6. $8 x-9 \leq 5 x+3 \underline{x \leq 4}$

7. $-7 x-27 \geq 2 x+9 \quad x \leq-4$

8. $18-4 x \geq 3-x \quad x \leq 5$

9. $20-6 x \leq 5 x+9 \quad x \geq 1$

10. $7 x \geq-3(x-10) \quad x \geq 3$

11. $4 x-2 \geq 10 x+16 \quad x \leq-3$

12. $3 x-5 x \geq 12-4 \quad x \leq-4$

13. $-2(x-7)+1 \geq 3 x \quad x \leq 3$

14. $5-2(x+5)>3-4 x \underline{x}>4$

15. $8-4 x+12 \geq 3 x-2(x-5) \quad x \leq 2$

16. $2(x-5)-4 \geq 3 x-2+5 x \quad x \leq-2$

17. $15-(x-9) \geq 3(x+4)-2 x \quad x \leq 6$

18. $10(x-4)-2 x<4(x-6)+24 x<10$

Journal

1. Solve and graph the solution set to the inequality $2 x>3+2 x$. What is the solution set? Explain.
2. Solve and graph the solution set to the inequality $-6 x-4<-2(3 x-8)$. What is the solution set? Explain.
3. Tina solved the inequality $4 x-6>-2 x+6$ and got an answer of $x>6$. To test her answer, she used the point $x=10$, and found that the value satisfied the equation. Tina concluded that her answer was correct. Is she correct in this assumption? Explain.
4. For the inequality $3(x-2)+5>x+2$, show the solution one step at a time. For each step, describe what is being done to the inequality, and explain why. Be sure to use correct algebraic language.
5. Show that the inequality $4-2 x>3-4 x$ is equivalent to the inequality $2 x-4<4 x-3$.

Cumulative Review

Simplify.

1. $-3-(-4)$
1
2. $\left[(4-6)^{3}\right]^{2}$
64
3. $5 \cdot-6^{2}-180$
4. $8-(5-10) 13$

Evaluate.

5. $3 x-4$ when $x=-6 \frac{-22}{5}$
6. $10-3 x$ when $x=-1 \quad 13$
7. $\frac{6 x-8}{4-2 x}$ when $x=\frac{1}{2}$
8. $\sqrt{\frac{-2 x+4}{x+7}}$ when $x=-4 \underline{2}$

Solve for the given variable.
9. $C=2 \pi r$ for r
$r=\frac{C}{2 \pi}$
10. $S A=2 \pi r^{2}+2 \pi r h$ for h
$h=\frac{S A-2 \pi r^{2}}{2 \pi r}$

Possible Journal Answers

1. To solve $2 x>3+2 x$, then $0>3$, which is a false statement. This inequality has no solution. Its solution set is an empty number line.
2. To solve $-6 x-4<-2(3 x-8)$, then $-6 x-4<-6 x+16$, which gives $-4<16$. This is a true statement. The inequality is true for all real numbers. The graph of its solution set is the entire number line.
3. Tina can not use the test of one value to conclude that her solution is correct. Even though $x=10$ satisfies the inequality, it is only because that value happens to fall in the true solution set of the inequality, which is $x>2$.
4. $3(x-2)+5>x+2$
$3 x-6+5>x+2 \quad$ Distributive Property of Multiplication Over Addition
$3 x-1>x+2$
$3 x-1-x>x+2-x$
$2 x-1>2$
$2 x-1+1>2+1$
$2 x>3$
$\frac{2 x}{2}>\frac{3}{2}$ $x>\frac{3}{2}$

Addition, Combine Like Terms
Subtraction Property of Inequality
Subtraction, Combine Like Terms
Addition Property of Inequality
Combine like terms
Division Property of Inequality
Division
5. $4-2 x>3-4 x$
$-1(4-2 x)<-1(3-4 x) \quad$ Multiply both sides by -1
$-4+2 x<-3+4 x$
$2 x-4<4 x-3$
Distribute
Use the Commutative Property of Addition to re-order terms

