NAME

Module 5 Solving Linear Inequalities of One Variable
Lesson 2 Solving One-Step Linear Inequalities

Solve the following inequalities. Then graph each solution on a number line.

1. $M+2 \geq 4 \quad M \geq 2$

2. $M-4 \leq-5 \quad M \leq-1$

3. $3 y \leq 9 \quad y \leq 3$

4. $-10<5 r-2<r$

5. $-y \leq-7 \quad y \geq 7$

6. $x+2<0 \quad x<-2$

7. $N-4 \geq 0 \quad N \geq 4$

8. $6-d<12 d>-6$

9. $P-12 \leq-7 \quad P \leq 5$

10. $K+2>2 \underline{K}>0$

11. $9 c \geq-54 \quad c \geq-6$

12. $11 A<88 \quad A<8$

13. $\frac{x}{3} \leq 1 \quad x \leq 3$

14. $\frac{N}{5}>2 \quad N>10$

15. $-3 z \geq-9 \quad z \leq 3$

16. $-5 V \leq 45 \quad V \geq-9$

Journal

1. Explain, in your own words, why you change the inequality sign when you multiply or divide by a negative number when solving and inequality algebraically.
2. Describe how you would solve and graph the solution to the inequality $x-4 \geq 4$.
3. Susan says that the solution to the inequality $-4 x<16$ is $x<-4$. Joseph says that the solution is $x>-4$. Who is correct and why?
4. What are advantages and disadvantages to solving one-step equations using algebra instead of inspection?
5. Explain how to solve one-step inequalities.

Cumulative Review

Simplify each expression.

1. $(-5)(2)(-7) 70$
2. $(-7)(3)-21$
3. $\frac{-44}{-11} 4$
4. $(29)(0)(-13)$
5. $36 \div(-4)-9$
6. $\frac{15}{0}$ Undefined
7. $0 \div(-6) \underline{0}$
8. $(-35) \div 5-7$
9. $\frac{-81}{9}-9$
10. $\frac{-12}{12}-1$

Possible Journal Answers

1. You can only do things to both sides of the inequality that keep the inequality true. For example, $-1<2$ is a true inequality. If we multiply both sides by -1 , then we have the inequality $1<-\mathbf{2}$, which is not true. If we flip the inequality from $<$ to \rangle, then the statement is true.
2. Adding 4 to both sides of the inequality gives us, $x \geq 8$. To graph the solution, identify the number 8 on the number line with a closed circle and draw an arrow to the right for the numbers that are greater than 8 .
3. Joseph is correct. He remembered to flip the inequality sign after dividing by a negative number.
4. Using algebra is more precise than solving by inspection. With algebra we can solve inequalities systematically rather than trying to guess a correct answer.
5. Isolate the variable by adding, subtracting, multiplying, or dividing the same number to both sides. If you are multiplying or dividing a negative number, do not forget to change the direction of the inequality.
