NAME		
Module 2	Writing and Simplifying Algebraic Expressions	independent
Lesson 5	Evaluating Expressions	practice
		- Annone
Evaluate eac	ch expression for the given values of th	ie variables.
1 . –12 <i>xy</i> ² fo	x = 3, y = -1	2. $2(v^2 - 8) + w^3$ for $v = 5$, $w = -3$
3. 12 – -al	$ b + b^3$ for $a = 2, b = -4$	4. $2\pi r$ for $\pi = 3.14$, $r = 11$ 69.08
5. πr^2 for π	$=\frac{22}{7}, r=7$ 154	6. $\frac{2x+3y}{3}$ for $x = -12$, $y = 5$
7. $\frac{x - y^3}{2 - 3xy}$ for	or $x = 0, y = -6$ 108	8. $c^2 - b^2$ for $c = 12$, $b = 8$ 80
9. $\sqrt{x} - \sqrt[3]{2}$	\bar{y} for x = 36, y = -8 8	10. $\frac{x^2 + y^2}{x^3 - y^3}$ for $x = -1$, $y = -3$ $\frac{5}{13}$
Evaluate eac	th expression when $a = -1$, $b = 4$, and	c = -3.
11. $a^3 - 2ac$	$ -c^2 $ -16	12. $\frac{6a^2 - 10a - 7}{b + 2c}$ $-\frac{9}{2}$ or $-4\frac{1}{2}$
13. $a^2 + b^2$ –	$-2ac^{3}$ -37	14. $b^2 - 4ac$
15. $\frac{-b + \sqrt{b^2}}{2a}$	<u>- 9a</u> -12	16. $\frac{-b + \sqrt[3]{b^2 - 11a}}{2a}$ $\frac{\frac{1}{2}}{2}$
Evaluate the	expression $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$ for the given	n values of the variables.
17. <i>a</i> = 1, <i>b</i>	= 6, <i>c</i> = 5	18. $a = 1, b = 7, c = 12$
19. <i>a</i> = 1, <i>b</i>	= -6, c = 8 2	20. $a = 3, b = -4, c = -4$
Journal		
1. Explain why and will alw	y the expression $-x^3$ will always be a negative number if x is negative	tive number, if x is positive,
 Use the ord different. 	der of operations to describe how the expr	ressions $(-x)^3$ and $-x^3$ are
3. In your owr	n words, explain why the order of operation	ns is important. Create your
4. Give an examp	ample to show now the process works.	rm the operations of
multiplication 5. Explain how	on and division from left to right. v squaring a number and doubling a numbe	er are different.
Possible Journ 1. $-x^3$ means	ial Responses the "opposite of the cube of x" If x is a po	sitive number, the cube of x is a positive number and
the opposit	e of a positive number is a negative numb	er. If x is a negative number its cube is negative and x^{2}
the opposit number and	e of a negative number is a positive numb $d - x^3$ positive whenever x is negative.	er. That makes $-x^{\circ}$ negative whenever x is a positive
	-	(Possible Journal Responses continued on p. 90)
Nodule 2 Lessor	n 5 89	Independent Pract

 \oplus

monotype 410-467-3300

Cumulative Review

Identify the algebraic property used to get the expression that appears on each indicated line.

- $3x^2 + 5x^2 + 3(x 4) + 6$ 6. a) $3x^2 + 5x^2 + 3x - 12 + 6$ $8x^2 + 3x - 6$
- **Distributive Property** a)

- (5x + 7y) + 3x7. a) 5x + (7y + 3x)b) 5x + (3x + 7y)c) (5x + 3x) + 7y8x + 7y
- **Associative Property of Addition** a)
- **Commutative Property of Addition** h)
- Associative Property of Addition c)

- 45 + 9(1) + 4[7 + (-7)]8. 45 + 9(1) + 4(0)a) 45 + 9 + 4(0)b) c) 45 + 9 + 0d) 45 + 9
 - 54 e)
- **Additive Inverse Property** a)
- **Multiplicative Identity Property** b)
- **Zero Property of Multiplication** c)
- **Additive Identity Property** d)

- 9. 2x(5 + x) + 7(1)a) 2x(5) + 2x(x) + 7(1)b) 2(5)x + 2x(x) + 7(1) $10x + 2x^2 + 7(1)$
 - $10x + 2x^2 + 7$ c)
 - $2x^2 + 10x + 7$ d)
- Distributive Property of Multiplication over Addition a)
- **Commutative Property of Multiplication** b)
- **Multiplicative Identity Property** c)
- **Commutative Property of Addition** d)

(Possible Journal Responses continued)

2. In the expression $(-x)^3$, the opposite of x is inside the grouping symbol, which means it is the opposite of x that is being cubed, not x. You must distribute the negative sign to the x first and then cube. If x = -2, then $(-x)^3 = (-(-2))^3$ or $(2)^3$ which equals 8. If x = 2, then $(-x)^3 = (-2)^3$ and $(-2)^3 = -8$. In the expression $-x^3$, where there are no grouping symbols, the value of x will be cubed first and then the opposite of that value will be taken. If x = 2, then $-x^3 = -2^3$. Cube the 2 first and then take its opposite, so $-2^3 = -8$. If x = -2, then $-x^3 = -(-2)^3$ and -(-8) = 8.

3. Without the order of operations, the same expression could have different values. By using the order of operations, there will be one correct value for a given expression. If we have a table with length 40 inches and width 30 inches the area is 1200 in². If we increase the length of our table by 10 inches, the new area

- © 2003 BestQuest
- is found as follows: 30 (40 + 10) = 30 (50) = 1,500. If someone tried to find the new area without using the order of operations, they might get: 30 (40) + 10 = 1,200 + 10 = 1,210 (this is incorrect).
- 4. From left to right, $100 \div 10 \times 2 = 10 \times 2 = 20$ (this is correct). Not using the left-to-right rule, someone
- might get: $100 \div 10 \times 2 = 100 \div 20 = 5$ (this is incorrect).
- 5. Squaring a number is multiplying the number by itself and doubling a number is multiplying the number by two. Module 2 Lesson 5

90

Independent Practice