
Module 2	Writing and Simplifying Algel Expressions	braic	ndepende	nt	
Lesson 1	Using the Language of Alge	bra	practice		
Identify the c	oefficient of each monomial.				
1. 8H	2. –y	3. –0.003 <i>m</i>	4. 6.9 <i>N</i>		
8		-0.003	6.9		
5. $-\frac{c}{7}$ $-\frac{1}{7}$	6. <u>b</u> <u>6</u>	7. $\frac{2y}{5}$ 2 5	$8. \ \frac{4w}{9} \\ \mathbf{\frac{4}{9}}$		
9. a rational $\frac{\frac{1}{3}}{\frac{1}{3}}$ 11. the coefficient $\frac{x}{4}$	number. cient $\frac{1}{4}$ with one variable.	10. one variable w <u>x</u> 12. a coefficient of	th a coefficient of 1.	le.	
4 13. a natural number.		14. two variables v	 -8n² 14. two variables with a coefficient of -1. 		
 7 15. a coefficient with one cubed variable. 5x³ 		16. a coefficient of 3abc 7	$\frac{3}{7}$ and three variables.		
Give an exan	nple of the following types of poly	ynomials. possible answ	ers given		
17. Trinomial	18. Monomi	al 1	9. Binomial		
$\frac{x^2 + 4x}{2}$	- 3 2ab ³		<u>7m + 1</u>		

 \oplus

monotype composition _____

DIGITAL

Trinomial . 3r – 5s Binomial	23.	$\frac{\text{Monomial}}{m^4n^3 \pm 3m^3n^2 \pm }$	
a. 3r – 5s Binomial	23.	$m4n3 \perp 3m3n2 \perp$	
Binomial			5m²n
		Trinomial	
. 6xy + 4	25.	$a^{3}b^{2} - a^{2}b^{4} - 5a^{2}b^{4}$	ab ²
Binomial		Trinomial	
. 3QT ³	27.	6m + 2n – 1	
Monomial		Trinomial	
	-		- <u>-</u>
ate the degree of each polynomial			
$5c^5 - 3c^7 + c^9$	33.	6a4b — 8ab ³	
9		E	

Cumulative Review

Let A = {2, 4, 6}, B = {6, 8, 10}, and C = {1, 3, 5}. Find the following.

1. A U B <u>{2, 4, 6, 8, 10}</u>	2. A ∩ B {6}
3. B ∩ C {} or Ø or Empty Set	4. B ∪ C <u>{1, 3, 5, 6, 8, 10}</u>

S
e
Ô
÷
20
~
ш
\sim
Ä
S
2
(\land)
\sim
(\mathcal{O})
~

Module 2 Lesson 1

Independent Practice

monotype composition ____

DIGITAL

5. $\sqrt{-49}$	6. $\sqrt{49}$	7. -\sqrt{49}
Not a real number	7	
8. ³ √−27	9. $-\sqrt[3]{27}$	10 . − ³ √−27
-3	_3	3
Simplify, if possible.	12 (2)2	12 (2)3
11 . –3 ²	12. (-3) ²	13 . (-2) ³
-9	<u> </u>	<u>–8</u>
14. 2 ³	15. $12 - 20 \div 2^2$	16. $\frac{15 + 3(2)}{3}$
8	7	7

Manipulative Problems

Model each polynomial using Algebra Tiles.

Evaluate the following radicals, if possible.

Possible Journal Responses

- 1. Yes. By definition, a coefficient is the numerical factor of a term containing one or more variables. A numerical factor can be a fraction.
- 2. If the fraction has a variable in the denominator or under a radical sign, then it is not a monomial.
- 3. A monomial is a polynomial consisting of only one term.
- 4. The degree of the term $3^3x^2y^2$ is 4 because the sum of all exponents on variables is 4.
- 5. The degree of the term $3x^3y^2z$ is 6 because the sum of the exponents on the variables is

Module 2 Lesson 1

Independent Practice

^{3 (}the exponent of x) + 2 (the exponent of y) + 1 (the exponent of z).

^{© 2003} BestQuest

 \oplus

 \oplus