### NAME

## **Module 18** Solving Radical Equations

Solving One-Step Radical Equations Lesson 1



#### Solve.

1. 
$$\sqrt{x} = 2 \times 4$$

3. 
$$\sqrt{h} = 16$$
 **h = 256**

**5.** 
$$\sqrt{x} = 6$$
 **x** = **36**

**7.** 
$$-\sqrt{v} = -2$$
 **v** = **4**

9. 
$$\sqrt{x} = -10$$
 no solution

11. 
$$-\sqrt{m} = -0.8$$
  $m = 0.64$ 

**13.** 
$$\sqrt[3]{x} = 3$$
 **w = 27**

15. 
$$-\sqrt[3]{n} = -2$$
  $n = 8$ 

17. 
$$\sqrt[4]{r} = 4$$
  $r = 256$ 

**19.** 
$$-\sqrt[4]{t} = -3$$
 **t = 81**

**2.** 
$$\sqrt{s} = 5$$
 **s = 25**

4. 
$$\sqrt{k} = 4 \ \frac{k = 16}{k}$$

**6.** 
$$\sqrt{n} = 9$$
 **n = 81**

8. 
$$-\sqrt{v} = 5$$
 no solution

**10.** 
$$-\sqrt{a} = -4$$
 **a = 16**

12. 
$$-\sqrt{f} = -\frac{1}{3} \frac{f = \frac{1}{9}}{}$$

**14.** 
$$\sqrt[3]{w} = -1$$
  $w = -1$ 

**16.** 
$$\sqrt[4]{g} = 2$$
 **g = 16**

18. 
$$\sqrt[4]{t} = -1$$
 no solution

**20.** 
$$\sqrt[3]{p} = \frac{3}{5}$$
  $\frac{p = \frac{27}{125}}{}$ 

# **Journal**

- 1. Jorge is asked for the solution to the equation  $\sqrt[4]{w} = -2$ . Explain why his solution w = -16 is incorrect.
- 2. Explain how inverse operations can be used to solve radical equations like
- **3.** For what values of a does the equation  $\sqrt{x} = a$  have a solution? Explain. **4.** For what values of a does the equation  $\sqrt[3]{x} = a$  have a solution? Explain.
- **5.** Rosita solved the equation  $\sqrt{x}=-3$  as shown.  $\sqrt{x}=-3$   $\sqrt{x^2}=-3^2$

$$\sqrt{x} = -3$$

$$\sqrt{x^2} = -3^2$$

$$x = -9$$

Identify her mistake. How could Rosita have prevented her mistake?

### **Cumulative Review**

Solve.

1. 
$$\frac{x}{2} = -3$$

$$x = -6$$

**2.** 
$$\frac{3}{x} + \frac{4}{x} = 14$$

$$x=\frac{1}{2}$$

3. 
$$\frac{4}{5} = \frac{2}{x+3}$$
  $x = -\frac{1}{2}$ 

Simplify.

**4.** 
$$\frac{4}{3} \cdot \frac{3}{2}$$

6

**7.**  $\sqrt{3} \cdot \sqrt{4}$ 

5. 
$$\frac{2}{3x} \div \frac{1}{x}$$

**8.** 
$$\sqrt{6} \cdot \sqrt{3}$$

$$3\sqrt{2}$$

**6.** 
$$\frac{1}{3} + \frac{3}{x-2}$$

9. 
$$\frac{\sqrt{\sqrt{2}}}{\sqrt{2}}$$

**10.** 
$$3\sqrt{3} + 5\sqrt{27}$$

$$18\sqrt{3}$$

### **Possible Journal Answers**

- 1. When finding answers to even indexed radicals such as  $\sqrt[4]{}$  or  $\sqrt{}$ , it is understood the implied answer is nonnegative. Because the principal (positive) root is taken, this number must be nonnegative.
- 2. To solve a radical equation, use an inverse operation to eliminate the radical. For example, in the equation  $\sqrt{b} = 4$ , the operation is taking the square root. The inverse operation is squaring. When both sides are squared, the equation becomes b = 16, which is the solution.
- 3. The equation  $\sqrt{x} = a$  has a real solution for any real number  $a \ge 0$ . When finding answers to even indexed radicals such as  $\sqrt[4]{}$  or  $\sqrt{}$ , the solution is always nonnegative. So, the equation has a solution for  $a \ge 0$ .
- 4. The equation  $\sqrt[3]{x} = a$  has a solution for any real number. The cube of positive numbers is positive, and the cube of negative numbers is negative. Therefore, the cube root of a negative number is negative, and the cube root of a positive number is positive. The cube root of zero is zero, so the solution to  $\sqrt[3]{x} = a$  can be positive, negative, or zero.
- 5. Squaring an equation is a proper operation. However, the square root of a number is nonnegative. So, the equation  $\sqrt{x} = -3$  cannot be true. To save work for herself, Rosita should have realized there is no solution to this equation.