NAME

Module 18 Solving Radical Equations
Lesson 1 Solving One-Step Radical Equations

Solve.

1. $\sqrt{x}=2 \underline{x=4}$
2. $\sqrt{h}=16 \underline{h}=256$
3. $\sqrt{x}=6 \quad x=36$
4. $-\sqrt{v}=-2 \quad v=4$
5. $\sqrt{x}=-10$ no solution
6. $-\sqrt{m}=-0.8 \quad \underline{m}=0.64$
7. $\sqrt[3]{x}=3 \quad w=27$
8. $-\sqrt[3]{n}=-2 \quad n=8$
9. $\sqrt[4]{r}=4 \underline{r}=256$
10. $-\sqrt[4]{t}=-3 \quad t=81$
11. $\sqrt{s}=5 \underline{s}=25$
12. $\sqrt{k}=4 \quad k=16$
13. $\sqrt{n}=9 \underline{n}=81$
14. $-\sqrt{v}=5$ no solution
15. $-\sqrt{a}=-4 \quad a=16$
16. $-\sqrt{f}=-\frac{1}{3} \quad f=\frac{1}{9}$
17. $\sqrt[3]{w}=-1 \quad \underline{w}=-1$
18. $\sqrt[4]{g}=2 \quad g=16$
19. $\sqrt[4]{t}=-1$ no solution
20. $\sqrt[3]{p}=\frac{3}{5} \quad p=\frac{27}{125}$

Journal

1. Jorge is asked for the solution to the equation $\sqrt[4]{w}=-2$. Explain why his solution $w=-16$ is incorrect.
2. Explain how inverse operations can be used to solve radical equations like $\sqrt{b}=4$.
3. For what values of a does the equation $\sqrt{x}=a$ have a solution? Explain.
4. For what values of a does the equation $\sqrt[3]{x}=a$ have a solution? Explain.
5. Rosita solved the equation $\sqrt{x}=-3$ as shown.

$$
\begin{aligned}
\sqrt{x} & =-3 \\
\sqrt{x^{2}} & =-3^{2} \\
x & =-9
\end{aligned}
$$

Identify her mistake. How could Rosita have prevented her mistake?

Cumulative Review

Solve.

1. $\frac{x}{2}=-3$
$x=-6$
2. $\frac{3}{x}+\frac{4}{x}=14$
$x=\frac{1}{2}$
3. $\frac{4}{5}=\frac{2}{x+3}$
$x=-\frac{1}{2}$

Simplify.

4. $\frac{4}{x} \cdot \frac{3 x}{2}$
6
5. $\frac{2}{3 x} \div \frac{1}{x}$
$\frac{2}{3}$
3
6. $\frac{1}{3}+\frac{3}{x-2}$
$\frac{x+7}{3 x-6}$
7. $\frac{\sqrt{40}}{\sqrt{10}}$
2
8. $3 \sqrt{3}+5 \sqrt{27}$
$18 \sqrt{3}$

Possible Journal Answers

1. When finding answers to even indexed radicals such as $\sqrt[4]{ }$ or $\sqrt{ }$, it is understood the implied answer is nonnegative. Because the principal (positive) root is taken, this number must be nonnegative.
2. To solve a radical equation, use an inverse operation to eliminate the radical. For example, in the equation $\sqrt{b}=4$, the operation is taking the square root. The inverse operation is squaring. When both sides are squared, the equation becomes $b=16$, which is the solution.
3. The equation $\sqrt{x}=a$ has a real solution for any real number $a \geq 0$. When finding answers to even indexed radicals such as $\sqrt[4]{ }$ or $\sqrt{ }$, the solution is always nonnegative. So, the equation has a solution for $a \geq 0$.
4. The equation $\sqrt[3]{x}=a$ has a solution for any real number. The cube of positive numbers is positive, and the cube of negative numbers is negative. Therefore, the cube root of a negative number is negative, and the cube root of a positive number is positive. The cube root of zero is zero, so the solution to $\sqrt[3]{x}=a$ can be positive, negative, or zero.
5. Squaring an equation is a proper operation. However, the square root of a number is nonnegative. So, the equation $\sqrt{x}=-3$ cannot be true. To save work for herself, Rosita should have realized there is no solution to this equation.
