UEM17L01BLM/AK_61519 6/17/03 1:38 PM Page 89

DIGITAL

NAME

Module 17Simplifying Radical ExpressionsLesson 1Simplifying Radicals

independent practice

Simplify.

1 . $\sqrt{25}$ 5	2. $\sqrt{49}$ 7
3. √32 4√2	4. √18 <u>3√2</u>
5. $\sqrt{12}$ 2 $\sqrt{3}$	6. $\sqrt{20}$ 2 $\sqrt{5}$
7 . √75 5√3	8. $\sqrt{50}$ <u>5</u>$\sqrt{2}$
9. $\sqrt{24}$ 2 $\sqrt{6}$	10. $\sqrt{72}$ 6 $\sqrt{2}$
11. $\sqrt{48}$ 4 $\sqrt{3}$	12. $\sqrt{125}$ 5
13. $\sqrt{-20}$ not a real number	14. $-\sqrt[3]{135}$ <u>-3$\sqrt[3]{5}$</u>
15 . −√300 <u>−10√3</u>	16. $-\sqrt{80}$ <u>-4$\sqrt{5}$</u>
17 . √356 2√7	18. $\sqrt[3]{16}$ 2 $\sqrt[3]{2}$
19. $\sqrt[3]{-48}$ -2$\sqrt[3]{6}$	20. $\sqrt{-18}$ not a real number
A	

Journal

- 1. What does the square root symbol mean?
- **2.** Why are there no real answers to square roots of negative numbers, but there are real answers to cube roots of negative numbers?
- **3.** Why is it better to simplify radicals than to find a decimal approximation?
- **4.** George simplified $\sqrt{720}$ and got $6\sqrt{20}$. Carrie simplified $\sqrt{720}$ and got $12\sqrt{5}$. Who is correct and why?
- **5.** Explain how to simplify $\sqrt{75}$.

Cumulative Review

Solve. Simplify any radical answers.

S
Φ
O
÷
83
ă
m
0
0
\sim
0

1. $x^2 = 24$ $x = \pm 2\sqrt{6}$ 2. $x^2 = 245$ $x = \pm 7\sqrt{5}$ 3. $x^2 + 5x + 6 = 0$ x = -3 or -24. $x^2 - 4x = 12$ x = -2 or 65. $x^2 - 3x - 10 = 0$ x = -2 or 56. $x^2 + 5x + 4 = 0$ x = -4 or -1

Module 17 Lesson 1

Independent Practice

monotype composition

7.
$$x^2 - 4x - 7 = 0$$
 $\frac{x = 2 \pm \sqrt{11}}{x = \frac{-3 \pm 3\sqrt{5}}{2}}$
8. $x^2 - 2x - 5 = 0$ $\frac{x = 1 \pm \sqrt{6}}{x = \frac{-3 \pm 3\sqrt{5}}{2}}$
10. $\frac{x^2 + 2x + 1}{x = 1} = 8$ $\frac{x = 3}{2}$

Possible Journal Answers

- 1. The square of a number is the number times itself. The square root symbol means to find what number times itself equals the number on the inside of the square root symbol. Taking a square root is the opposite (or inverse operation) of squaring a number.
- 2. One cannot multiply a number by itself and get a negative number. Consider the possibilities: a positive multiplied by another positive is a positive. A negative multiplied by another negative is positive. For cube roots there are two possibilities: the root is a positive or a negative number. A positive times a positive is still positive. A negative times a negative is positive, but when multiplied by a negative again, the answer is negative. So, it is possible for a cube root to be a negative number.
- 3. A simplified radical is an exact answer. A decimal approximation is not exact. It is approximate. For measurements, a decimal is usually more appropriate, but for solving more complex math problems, a simplified radical can make computations easier.
- 4. Carrie is correct. Although George's answer is equal to $7\sqrt{20}$, it is not fully simplified. George's answer simplifies to $12\sqrt{5}$. ($6\sqrt{20} = 6\sqrt{4} \cdot \sqrt{5} = 6 \cdot 2\sqrt{5} = 12\sqrt{5}$)
- 5. Examine the factors of 75. They are 1, 3, 5, 15, 25, and 75. The perfect square, 25, is one of the factors of 75. So, $\sqrt{75} = \sqrt{25} \cdot \sqrt{3} = 5\sqrt{3}$.

monotype composition_

Module 17 Lesson 1