NAME

Module 16 Solving Rational Equations
 Lesson 1 Solving Rational Equations

Solve the following rational equations.

1. $\frac{m}{12}=\frac{1}{3} \quad \mathrm{~m}=4$
2. $\frac{4}{x}=\frac{1}{2}+\frac{3}{x} \quad x=2$
3. $\frac{r}{5}=\frac{3}{5}+\frac{r}{2} \underline{r=-2}$
4. $\frac{2}{5 s}=\frac{1}{5} \quad s=2$
5. $\frac{2 x}{3}-\frac{5}{4}=\frac{x}{2} \quad x=\frac{15}{2}$
6. $\frac{2 m}{7}+\frac{3}{5}=\frac{m}{5} \frac{m=-7}{2}$
7. $\frac{3}{2 r}-\frac{5}{4}=\frac{6}{3 r} \quad r=-\frac{2}{5}$
8. $\frac{4 d}{d-2}-\frac{3}{d-2}=5 \quad d=7$
9. $\frac{3}{x-4}+\frac{2 x+1}{x-4}=6 \quad x=7$
10. $\frac{4 b}{b-6}-\frac{2 b+1}{b-6}=3 \underline{b}=17$
11. $\frac{p}{9}=\frac{4}{3} \quad p=12$
12. $\frac{3}{a}=\frac{1}{6}+\frac{2}{a} \quad \mathbf{a}=\mathbf{6}$
13. $\frac{y}{7}+\frac{3}{4}=\frac{y}{4} \quad \underline{y}=7$
14. $\frac{4}{m}=\frac{-2}{7} \quad m=-14$
15. $\frac{3}{a}=\frac{1}{6 a}-2 \frac{a=-\frac{17}{12}}{8}$
16. $\frac{2}{3}-\frac{3 b}{4}=\frac{2 b}{6} \frac{\boldsymbol{b}=\frac{8}{13}}{13}$
17. $\frac{7}{2 t}+\frac{3}{t}=4 \xrightarrow{t=\frac{13}{8}}$
18. $\frac{3 g}{g+1}+\frac{2 g-1}{g+1}=3 \mathrm{~g}=2$
19. $\frac{2 x}{x+3}-\frac{4 x-2}{x+3}=4 \quad x=-\frac{5}{3}$
20. $\frac{m-6}{2 m+1}+\frac{3}{2 m+1}=7 \underline{m=-\frac{10}{13}}$

Journal

1. Michael says that the equation $\frac{1}{x}+\frac{3}{5}=\frac{1}{4}$ is solved by first subtracting $\frac{3}{5}$ from both sides of the equation. Describe another way to solve this equation.
2. Explain why the equation $\frac{2}{4 x}+\frac{1}{3 x}=\frac{8}{x}$ has no solution.
3. Sandeep claims that the only way to solve the equation $6 x+\frac{3}{4}=\frac{1}{6}$ is to first multiply both sides of the equation by the LCD, 12. He is incorrect. Give two alternative methods to solve this equation.
4. Explain how to solve the equation $\frac{2}{x-6}+\frac{4 x+1}{x-6}=3$.

Possible Journal Answers

1. Another way to solve the equation $\frac{1}{x}+\frac{3}{5}=\frac{1}{4}$ is to eliminate the fractions by first multiplying each side of the equation by the least common denominator $20 x$. The equation is now $20+12 x=5 x$. Collect terms $7 x=-20$. This gives $x=-\frac{20}{7}$, or $-2 \frac{6}{7}$.
2. When each side of the equation $\frac{2}{4 x}+\frac{1}{3 x}=\frac{8}{x}$ is multiplied by the least common denominator $12 x$, the variable x cancels in each term which gives $6+4=96$. Since $10 \neq 96$, there is no solution to this equation.
3. 1st Method:

2nd Method:

$$
\begin{aligned}
6 x+\frac{3}{4} & =\frac{1}{6} \\
24\left(6 x+\frac{3}{4}\right) & =24\left(\frac{1}{6}\right) \\
144 x+18 & =4 \\
144 x & =4-18 \\
144 x & =-14 \\
x & =-\frac{14}{144}, \text { or } 45
\end{aligned}
$$

Cumulative Review

Perform the indicated operations. Assume that the domains of the rational expressions contain no value for which any denominator is zero.

1. $\frac{3 y}{y-4}-\frac{7}{y-4} \frac{3 y-7}{y-4}$
2. $\frac{3 m}{m+4} \cdot \frac{4 m+16}{6} \frac{2 m}{3 b^{2}+11 b+10}$
3. $\frac{2 n-1}{n+3} \div \frac{n-1}{6 n+18} \frac{\frac{12 n-6}{n-1}}{}$
4. $\frac{3 b+2}{b+1}+\frac{12}{b-1} \frac{\frac{3 b^{2}+11 b+10}{b^{2}-1}}{\frac{t^{2}}{8}}$
5. $\frac{y^{2}+5 y+6}{y^{2}-7 y+12} \div \frac{2 y^{2}+7 y+3}{y^{2}-7 y+12} \frac{\frac{y+2}{2 y+1}}{}$
6. $\frac{2}{t^{2}} \cdot\left(\frac{t^{3}}{4 t}\right)^{2}-\frac{\overline{8}}{}$

Challenge

Example: Solve.

$$
\begin{aligned}
\frac{3}{x-1}+\frac{4 x}{3} & =\frac{4}{x-1} & & \text { Given } \\
3(x-1)\left(\frac{3}{x-1}+\frac{4 x}{3}\right) & =3(x-1)\left(\frac{4}{x-1}\right) & & \text { Multiply by the LCD } \\
9+4 x(x-1) & =12 & & \text { Distributive Property } \\
9+4 x^{2}-4 x & =12 & & \text { Distributive Property } \\
4 x^{2}-4 x-3 & =0 & & \text { Fubtraction } \\
(2 x+1)(2 x-3) & =0 & & \text { Solve each factor for } 0 \\
2 x+1=0 & \text { or } 2 x-3 & =0 & \\
2 x=-1 & \text { or } & 2 x & =3 \\
x=\frac{-1}{2} & \text { or } & & x=\frac{3}{2}
\end{aligned}
$$

Checking the answer of $-\frac{1}{2}$ gives

Checking the answer of $\frac{3}{2}$ gives

$$
\begin{aligned}
\frac{3}{x-1}+\frac{4 x}{3} & =\frac{4}{x-1} \\
\frac{3}{\left(\frac{3}{2}\right)-1}+\frac{4 \cdot\left(\frac{3}{2}\right)}{3} & \stackrel{?}{=} \frac{4}{\left(\frac{3}{2}\right)-1} \\
3(2)+\frac{6}{3} & \stackrel{?}{=} 4(2) \\
8 & =8
\end{aligned}
$$

The solution set to this equation is $x=-\frac{1}{2}$ and $x=\frac{3}{2}$.

Solve.

1. $\frac{3}{x}=\frac{x}{12} \quad x=6$ or -6
2. $\frac{3}{x}-4=\frac{4 x}{3-x} \quad x=\frac{3}{5}$
3. $\frac{3}{4 m}+\frac{2 m}{m-2}=2 \quad m=\frac{6}{19}$
4. $\frac{1}{6 y}+\frac{3 y}{2 y+4}=\frac{4}{2 y+4} \quad y=\frac{2}{9}$ or 1
5. $\frac{s-3}{s}+\frac{s-4}{s-6}=\frac{1}{s} \underline{s=3 \text { or } 4}$

Possible Journal Answers (continued)
4. Begin by multiplying each side of the equation by $x-6$. This yields the equation $2+4 x+1=3 x-18$. Combine like terms to get $3+4 x=3 x-18$. Subtract three from both sides of the equation to get $4 x=3 x-21$. Subtract $3 x$ from both sides of the equation. The solution is $x=-21$.

