NAME

Module 15 Simplifying Rational Expressions

Lesson 1 Finding Restricted Values of Rational Expressions

State the restricted values of the following rational expressions.

1. $\frac{2+x}{5}$ no restricted values
2. $\frac{3}{x} \frac{0}{}$
3. $\frac{6 x}{x+1}-1$
4. $\frac{c+1}{c-5} 5$
5. $\frac{4 y-3}{4 y+3}-\frac{3}{4}$
6. $\frac{4 z-6}{7}$ no restricted values
7. $\frac{2 x+3}{5 x+15}-3$
8. $\frac{r+2}{r^{2}+4 r}-4,0$
9. $\frac{2}{x^{2}-16}-4,4$
10. $\frac{c-4}{c^{2}-64}-8,8$
11. $\frac{4 m-1}{2 m^{2}-12 m} \quad \mathbf{0 , 6}$
12. $\frac{2 q+1}{8 q^{2}-72}-3,3$
13. $\frac{x+5}{x^{2}+7 x+10}-5,-2$
14. $\frac{h-4}{4 h^{2}-24 h+36_{5}} 3$
15. $\frac{2 x-3}{2 x^{2}-x-15}-\frac{5}{2}, 3$
16. $\frac{x+3}{x^{2}+9 x+18}-6,-3$
17. $\frac{x-7}{x^{2}+8 x+16}-4$
18. $\frac{t+2}{t^{3}+5 t^{2}+6 t}-3,-2,0$
19. $\frac{g^{2}+4 g-5}{4 g^{4}-16 g^{2}}-2,0,2$
20. $\frac{h-4}{h^{2}-2 h} \quad 0,2$

Journal

1. Martha does not understand why the denominator of a rational expression cannot have a value of zero. Explain to her why the expression $\frac{2}{0}$ is undefined.
2. Explain why -3 is excluded from the domain of the expression $\frac{2 x}{x+3}$.
3. Explain how one would find the restricted values of $\frac{3 x+1}{x^{2}-8 x+12}$.
4. Jolie says that -2 and 4 are the restricted values for a certain rational expression. Find an expression that has these restricted values.
5. Find the value of the expression $\frac{6 x}{x-2}$ when x is equal to zero. Is zero a restricted value? Explain.

Cumulative Review

Factor completely.

1. $5 x+10 y+25 z \underline{5(x+2 y+5 z)}$
2. $\left.4 m^{2} z+12 m z^{2}-18 m^{2} \underline{2 m\left(2 m z+6 z^{2}-9 m\right.}\right)$
3. $r^{2}-5 r-36(r-9)(r+4)$
4. $t^{2}-100(t-10)(t+10)$
5. $4 u^{2}-25(2 u-5)(2 u+5)$
6. $z^{2}+8 z-48(z+12)(z-4)$
7. $4 x^{2}+28 x+48 \underline{4(x+3)(x+4)}$
8. $3 x^{3}+6 x^{2}-105 x 3 x(x+7)(x-5)$
9. $8 s^{2}+2 s-3 \underline{(4 s+3)(2 s-1)}$
10. $5 b^{2}-17 b-12(b-4)(5 b+3)$

Possible Journal Answers

1. Division problems can be changed into multiplication problems. For example, $\frac{6}{2}=3$ can be written as $6=2 \cdot 3$. Now, let $\frac{2}{0}=n$. As a multiplication problem, this would be $2=n \cdot 0$, but any number times zero is equal to zero, and therefore, there is no value of \boldsymbol{n} that makes this true. This expression, $\frac{2}{0}$, is undefined.
2. The denominator of a rational expression cannot have a value of zero. When negative three is substituted for the x in $x+3$, it becomes $-3+3=0$. Therefore, negative three is excluded from the domain of $\frac{2 x}{x+3}$.
3. Find the restricted values of $\frac{3 x+1}{x^{2}-8 x+12}$ by setting the denominator equal to zero; $x^{2}-8 x+12=0$. First, factor $x^{2}-8 x+12$ to be $(x-6)(x-2)$. Then, solve the equation $(x-6)(x-2)=0$ by setting each factor equal to zero and solving for $x: x-6=0$ and $x-2=0$. The restricted values are six and two.
4. The value of the expression $(x-a)(x-b)$ is zero when x equals either a or b. Let $a=-2$ and $b=4$. This gives $(x-(-2))(x-4)$ or $(x+2)(x-4)$. The expression $\frac{x^{3}-5 x}{(x+2)(x-4)}$ has the restricted values negative two and four.
5. Substitute zero for x to get $\frac{6(0)}{0-2}=\frac{0}{-2}=0$. Zero is not a restricted value. Only the number two would make the value of the denominator zero. So, two is the only restricted value in this expression. When the numerator of a rational expression has a value of zero, the value of the expression is zero except when the denominator is zero; in which case, the expression is undefined.
