NAM	ИЕ				
Module 13 Lesson 1		Solving Quadratic Equations of One Variable Defining Quadratic Equations		independent practice	
		of One Variable			
Det	ermine if e	ach equation is quadratic, linear,	or neith	er.	
1.	a ² = 2		2.	$2x^2 - 7x = 8$	
	Quadratic			Quadratic	
3.	$b^3 + 3b + 5 = 0$		4.	4x - 9x = 7	
	Neither			Linear	
5.	4x(x - 3) = 4		6.	$3x^2 = 3x^2 - 7x + 3$	
	Quadratic		-	Linear	
7.	$3y(y^2 + 1) = 0$		8.	$6^2m + 4m = 7$	
	Neither			Linear	
9.	2t ² – 4t +	$1 = t^2 - 6t$	10.	$3x^2 + 2x = 8(x + 1)$	
•	Quadratic			Ouadratic	
11	1 ² x + x =	72	10	$2(4m^2 - 2) - 9m^2$	
11.	$4^{-} \Lambda + \Lambda - 7^{-}$		12.	2(4)r - 3r = 0)r	
	LIIIGAI		-		

Determine if each equation is quadratic, linear, or neither. If it is a quadratic equation in one variable, put it into standard form and identify the coefficients a, b, and c.

	13.	$b^2 + 3 = 8b$ Quadratic; $b^2 - 8b + 3 = 0$		$2g(g + 3) = 0$ Quadratic; $2g^2 + 6g + 0 = 0$
		a = 1, b = -8, and c = 3		a = 2, b = 6, and c = 0
	15.	$2x^2 + 4x = 2x^2 - 3$ Linear	16.	9 = 4x - 3 Linear
	17.	$8 = 2b^2 + 4b \underline{\text{Quadratic; -2b}^2 - 4b + 8} = 0$	18.	$(c - 2)^2 - 3 = 0$ Quadratic; $c^2 - 4c + 1 = 0$
uest		a = -2, b = -4, and c = 8		a = 1, b = -4, and c = 1
103 BestQ	19.	$x^{2}(x^{2}-2x) = 3$ Neither	20.	$(h^2 - 4)^2 = 0$ Neither
© 20				

Module 13 Lesson 1

- **23.** $(n + 1)^2 + n = 0$ Quadratic; $n^2 + 3n + 1 = 0$ **24.** $(3c 2)^2 + 4c = 6$ Quadratic; $9c^2 8c 2 = 0$
 - a = 1, b = 3, and c = 1

Journal

- 1. Explain how to identify a polynomial equation.
- 2. Explain how to identify a linear equation in one variable.
- **3.** Explain how to identify a quadratic equation in one variable.
- **4.** Write a quadratic equation in one variable where a = 2, b = -3, and c = 5.
- 5. Marci is having trouble with her assignment. Explain to her why
 - $(x + 3)^2 3x = x + 2$ is a guadratic equation.

Cumulative Review

Simplify.

1. $(t^2 - 4t - 3) - (3t^2 + 2) = \frac{-2t^2 - 4t - 5}{-2t^2 - 4t - 5}$
2. $(6b^2 + 3b + 8) + (9b^2 - 8b + 1) \frac{15b^2 - 5b + 9}{15b^2 - 5b + 9}$
3. $4a^{2}b(6b - 3ab^{2} + 2b^{2})$ 24$a^{2}b^{2} - 12a^{3}b^{3} + 8a^{2}b^{3}$
4. $(3m - 4n)(5m + 2n)$ <u>15m² - 14mn - 8n²</u>
5. $(r-3)(r^2+2r-7) \frac{r^3-r^2-13r+21}{r^3-r^2-13r+21}$
6. $(10x^2 - 23x - 5) \div (2x - 5)$ 5x + 1
Factor, if possible.
7. $16g^2h - 12h^2 + 4gh^2 \frac{4h(4g^2 - 3h + gh)}{4h(4g^2 - 3h + gh)}$
8. $w^2 - 9w + 20 \frac{(w-4)(w-5)}{(w-4)(w-5)}$

9. 4uv + 8v - 3u - 6 (4v - 3)(u + 2)

10. $6a^2 - 7a - 5$ **(3a - 5)(2a + 1)**

Possible Journal Answers

- 1. In a polynomial equation, the expressions on both sides of the equation are polynomials.
- 2. A linear equation in one variable is an equation that can be written in the form ax + b = 0, where a does not equal zero. The highest power of the variable is one.
- 3. A quadratic equation in one variable is an equation that can be written in the form $ax^{2} + bx + c = 0$, where a does not equal zero. The highest power of the variable is two.
- 4. One possible equation is $2x^2 3x + 5 = 0$. It could also be written as $2x^2 = 3x 5$ or as other equivalent variations, using any choice of variable.
- 5. It is helpful to write the equation in standard form to determine whether it is a quadratic
- equation. The first step is to expand the term $(x + 3)^2$. This makes the original equation:
- $x^{2} + 6x + 9 3x = x + 2$. Combine like terms on the left side of the equation to get
- 2003 BestQues $x^{2} + 3x + 9 = x + 2$. When the terms on the right are subtracted from those on the left, the polynomial equation becomes $x^2 + 2x + 7 = 0$. This equation is in standard form. The highest power of the variable is \odot two and a does not equal zero. It is, therefore, a quadratic equation.

$$a = 9, b = -8, and c = -2$$