Module 13 Solving Quadratic Equations of One Variable
Lesson 1 Defining Quadratic Equations of One Variable

Determine if each equation is quadratic, linear, or neither.

1. $a^{2}=2$
2. $2 x^{2}-7 x=8$

Quadratic
3. $b^{3}+3 b+5=0$

Neither
5. $4 x(x-3)=4$

Quadratic
7. $3 y\left(y^{2}+1\right)=0$

Neither
9. $2 t^{2}-4 t+1=t^{2}-6 t$

Quadratic
11. $4^{2} x+x=7^{2}$

Linear

Quadratic
4. $4 x-9 x=7$

Linear
6. $3 x^{2}=3 x^{2}-7 x+3$

Linear
8. $6^{2} m+4 m=7$

Linear
10. $3 x^{2}+2 x=8(x+1)$

Quadratic
12. $2\left(4 m^{2}-3\right)=8 m^{2}$

Neither

Determine if each equation is quadratic, linear, or neither. If it is a quadratic equation in one variable, put it into standard form and identify the coefficients a, b, and c.
13. $b^{2}+3=8 b$ Quadratic; $\boldsymbol{b}^{2}-\mathbf{8 b}+3=\mathbf{0}$
$a=1, b=-8$, and $c=3$
15. $2 x^{2}+4 x=2 x^{2}-3$ Linear
17. $8=2 b^{2}+4 b$ Quadratic; $-2 b^{2}-4 b+8=0$
14. $2 g(g+3)=0$ Quadratic; $2 g^{2}+6 g+0=0$
$a=2, b=6$, and $c=0$
16. $9=4 x-3$ Linear
18. $(c-2)^{2}-3=0$ Quadratic; $c^{2}-4 c+1=0$

$$
a=1, b=-4, \text { and } c=1
$$

20. $\left(h^{2}-4\right)^{2}=0$ Neither
21. $(k-4)^{2}+2=k^{2}-1$ \qquad
22. $(n+1)^{2}+n=0$ Quadratic; $\boldsymbol{n}^{2}+3 n+1=0$
$a=1, b=3$, and $c=1$
23. $6(c+2)^{2}-2 c^{3}=4$ Neither
24. $(3 c-2)^{2}+4 c=6 \underline{\text { Quadratic; } 9 c^{2}-8 c-2=0}$ $a=9, b=-8$, and $c=-2$

Journal

1. Explain how to identify a polynomial equation.
2. Explain how to identify a linear equation in one variable.
3. Explain how to identify a quadratic equation in one variable.
4. Write a quadratic equation in one variable where $a=2, b=-3$, and $c=5$.
5. Marci is having trouble with her assignment. Explain to her why
$(x+3)^{2}-3 x=x+2$ is a quadratic equation.

Cumulative Review

Simplify.

1. $\left(t^{2}-4 t-3\right)-\left(3 t^{2}+2\right)-2 t^{2}-4 t-5$
2. $\left(6 b^{2}+3 b+8\right)+\left(9 b^{2}-8 b+1\right) 15 b^{2}-5 b+9$
3. $4 a^{2} b\left(6 b-3 a b^{2}+2 b^{2}\right) 24 a^{2} b^{2}-12 a^{3} b^{3}+8 a^{2} b^{3}$
4. $(3 m-4 n)(5 m+2 n) 15 m^{2}-14 m n-8 n^{2}$
5. $(r-3)\left(r^{2}+2 r-7\right) r^{3}-r^{2}-13 r+21$
6. $\left(10 x^{2}-23 x-5\right) \div(2 x-5) 5 x+1$

Factor, if possible.
7. $16 g^{2} h-12 h^{2}+4 g h^{2} \underline{4 h\left(4 g^{2}-3 h+g h\right)}$
8. $w^{2}-9 w+20(w-4)(w-5)$
9. $4 u v+8 v-3 u-6 \quad(4 v-3)(u+2)$
10. $6 a^{2}-7 a-5(3 a-5)(2 a+1)$

Possible Journal Answers

1. In a polynomial equation, the expressions on both sides of the equation are polynomials.
2. A linear equation in one variable is an equation that can be written in the form $a x+b=0$, where a does not equal zero. The highest power of the variable is one.
3. A quadratic equation in one variable is an equation that can be written in the form $a x^{2}+b x+c=0$, where a does not equal zero. The highest power of the variable is two.
4. One possible equation is $2 x^{2}-3 x+5=0$. It could also be written as $2 x^{2}=3 x-5$ or as other equivalent variations, using any choice of variable.
5. It is helpful to write the equation in standard form to determine whether it is a quadratic equation. The first step is to expand the term $(x+3)^{2}$. This makes the original equation: $x^{2}+6 x+9-3 x=x+2$. Combine like terms on the left side of the equation to get $x^{2}+3 x+9=x+2$. When the terms on the right are subtracted from those on the left, the polynomial equation becomes $x^{2}+2 x+7=0$. This equation is in standard form. The highest power of the variable is two and a does not equal zero. It is, therefore, a quadratic equation.
