NAME

Module 12	Simplifying Algebraic Expressions by	
	Factoring Polynominals	
Lesson 7	Dividing Polynomials Using Factoring	

independent practice

11

Simplify by factoring.

1.	$\frac{x^2 - 10x - 24}{x - 12}$	2.	$\frac{g^2-4g+3}{2}$ g -1
	X + Z		g – 3
3.	$\frac{m^2 + 8m + 15}{m + 3}$ m + 5	4.	$\frac{j^2 + 7j - 30}{j + 10}$ j - 3
5.	$\frac{c^2-15c+56}{c-8} = \frac{c-7}{c-7}$	6.	$\frac{d^2 - 12d - 64}{d + 4} \frac{d - 16}{d}$
7.	$\frac{6y^2 + 11y - 2}{y + 2} \frac{6y - 1}{2}$	8.	$\frac{4p^2 - 17p - 15}{4p + 3} \ p - 5$
9.	$\frac{9s^2 - 3s - 6}{3s - 3} \frac{3s + 2}{3s - 3}$	10.	$\frac{16m^2-9}{4m-3}$ 4m + 3
11.	$\frac{10a^2 + 21a - 10}{2a + 5} \ \mathbf{5a - 2}$	12.	$\frac{3c^2 - 13c - 30}{3c + 5} \ \underline{c - 6}$
13.	$\frac{2m^2-8}{2m-4}$ m + 2	14.	$\frac{3r^2-27}{3r+9}$ r - 3
15.	$\frac{3k^2-15k+12}{3k-3}$ k - 4	16.	$\frac{2z^2+34z+132}{2z+12}$ $\frac{z+1}{2z}$
17.	$\frac{3g^2 + 14g + 8}{2g + 8} \frac{\frac{3g + 2}{2}}{2}$	18.	$\frac{2y^2 + y - 28}{3y + 12} \frac{\frac{2y - 7}{3}}{3}$
19.	$\frac{8f^2 + 2f - 3}{6f - 3} \frac{\frac{41 + 3}{3}}{2}$	20.	$\frac{10z^2 - 27z + 5}{25z - 5} \frac{2z - 5}{5}$
21.	$\frac{6x^2 + 31x + 18}{6x + 27} = \frac{\frac{3x + 2}{3}}{-}$	22.	$\frac{5x^2+23x-42}{20x-28}$ $\frac{x+6}{4}$
23.	$\frac{4t^2 - 100}{8t - 40} = \frac{\frac{t + 5}{2}}{2}$	24.	$\frac{2k^2 - 32}{8k + 32} = \frac{\frac{k - 4}{4}}{4}$

Journal

- **1.** Use factoring to find two polynomials whose quotient is x 7.
- **2.** Lawanda found the quotient of $x^2 + 2x 48$ and x 6 using long division. Jason found the quotient by factoring. Show that they will get the same result by using their two different methods.
- **3.** Explain how to find the quotient of $6x^2 + 23x 4$ and 3x + 12 using factoring.
- 4. Give an example of two polynomials whose quotient cannot be found by factoring. Show that the expression cannot be simplified.

Possible Journal Answers

	1. The expression $x - 7$ equa	als $\frac{(x-7)(x-1)}{(x-1)}$. So, $\frac{x^2-8x+7}{x-1}$ equals $x - 7$.
	2. Lawanda's Method:	Jason's Method:
© 2003 BestQuest	x + 8	$\frac{x^2 + 2x - 48}{x - 6}$
	$x^2 - 6x$	(x + 8) (x - 6)
	8x - 48	(x-6)
	<u>8x - 48</u>	x + 8
	Module 12 Lesson 7	129

Independent Practice

Cumulative Review

Factor completely.

1. $6x^2 + 24x - 3 \frac{3(2x^2 + 8x - 1)}{2}$ **2.** $16q^2 - 9 \frac{(4q - 3)(4q + 3)}{4}$ **3.** $g^2 + 3g - 28$ (g + 7)(g - 4) **4.** $y^2 - 7y + 12$ (y - 3)(y - 4)**5.** $2a^2 + 10a - 3ab - 15b$ (2a - 3b)(a + 5) **6.** $4m^2 - 20m + 25$ (2m - 5)² **7.** $36p^2 - 121r^2 (6p - 11r)(6p + 11r)$ **8.** $u^2 + 12uv + 27v^2 (u + 9v)(u + 3v)$

Manipulatives

Simplify $\frac{x^2 - 4x + 3}{x - 1}$ using algebra tiles.

Step 1: Model $x^2 - 4x + 3$ and x - 1 with tiles.

9. $5d^2 + 19d - 4$ (5d - 1)(d + 4) **10.** $18m^2 - 15mn - 12n^2$ (3(2m + n)(3m - 4n))

Step 2: Fill in the rectangle with tiles from $x^2 - 4x + 3$ using x - 1 as the length.

Step 3: Find the width of the rectangle.

Possible Journal Answers (continued)

- 3. Factor $6x^2 + 23x 4$ as (x + 4)(6x 1) and factor 3x + 12 as 3(x + 4). Cancel the (x + 4) in the numerator
- with the (x + 4) in the denominator leaving $\frac{6x-1}{3}$. 4. Sample answer: $\frac{x^2+5x+6}{x+9}$; $\frac{x^2+5x+6}{x+9} = \frac{(x+3)(x+2)}{x+9}$. There are no common binomial factors in the numerator and denominator.

The width of the rectangle is x - 3. The quotient is x - 3.

Factor using algebra tiles.

Module 12 Lesson 7

Independent Practice