NAME

Module 12Factoring Using Several MethodsLesson 6Dividing Polynomials by Monomials

Factor completely.

1. $3x^3 - 48x$

3x(x-4)(x+4)

3. $12x^3 - 108x$

12x(x + 3)(x - 3)

5. $3d^3 + 21d^2 + 36d$

3d(d + 4)(d + 3)

7. $5a^3 - 40a^2 + 75a$

<u>5a(a - 3)(a - 5)</u>

- 9. $8z^2 + 28z + 12$ 2(2z + 1)(2z + 6)
- **11.** $6d^3 + 2d^2 8d$
 - 2d(3d + 4)(d 1)
- **13.** $r^3 + 2r^2 16r 32$ (r + 4)(r - 4)(r + 2)
- **15.** $6m^6 12m^4 48m^2$ $6m^2(m^2 + 2)(m + 2)(m - 2)$
- **17.** $a^{2}b + 3a^{2} 36b 108$ (a + 6)(a - 6)(b + 3)
- **19.** $-2f^2g^2 + 10f^2g + 18g^2 90g$

-2g(f + 3)(f - 3)(g - 5)

2. $y^4 - 81y^2$

 $y^{2}(y - 9)(y + 9)$

4. $-4c^3 + 196c$

-4c(c-7)(c+7)

independent

.....

<u>practice</u>

6. $2x^3 + 6x^2 - 20x$

2x(x + 5)(x - 2)

- 8. $3p^2q + 12pq 63q$ 3q(p + 7)(p - 3)
- **10.** $12f^3 2f^2 4f$ **2f(3f - 2)(2f + 1)**
- 12. 12m³n + 2m²n 80mn
 2mn(3m + 8)(2m 5)
- **14.** $2b^5 32b$ **2b(b² + 4)(b + 2)(b - 2)**
- **16.** $162n^9 288n^7 + 288n^5 512n^3$ **2n³(9n⁴ + 16)(3n + 4)(3n - 4)**
- **18.** $3c^2d^2 + 21c^2d 48d^2 336d$ **3d(c + 4)(c - 4)(d + 7)**
- **20.** $2x^3y^2 18x^3 + 32xy^2 288x$ **2x(x² + 16)(y + 3)(y - 3)**

- **1.** Raoul believes that the simplest factored form of $x^4 16$ is $(x^2 + 4)(x^2 4)$. Explain why he is incorrect and provide the correct answer.
- **2.** Describe the process for factoring $z^3 + 5z^2 z 5$.
- **3.** Explain the steps for completely factoring $16m^4 81n^4$.
- 4. Ramzi and Sashi have been discussing the difference of two squares. Ramzi states that the completely factored form of $-3a^3 - 3ab^2$ is $-3a(a^2 - b^2)$, but Sashi insists that the completely factored form is -3a(a + b)(a - b). Is either student correct? Explain why or why not.

Cumulative Review

Simplify. **1.** $14x^2 + 28$ **2.** $-2m^3 - 16m$ $14(x^2 + 2)$ $-2m(m^2 + 8)$ **3.** -(a + b) + c(a + b)**4.** cd + 5 + 5d + c(a + b)(c - 1) (c + 5)(d + 1)5. 81 - $4z^2$ 6. $p^4 - 81$ $(p^2 + 9)(p + 3)(p - 3)$ (9 + 2z)(9 - 2z)**7.** $x^2 - 2x - 63$ 8. $g^2 - 16g + 39$ (x + 7)(x - 9)(g-3)(g-13)**9.** $5q^2 - 29q - 6$ **10.** $-6n^3 - 10n^2 + 56n$ (5q + 1)(q - 6)2n(-3n + 7)(n + 4) or -2n(3n - 7)(n + 4)

Possible Journal Answers

- 1. For an expression to be considered factored completely, all the factors must be monomials or prime polynomials. Raoul's solution contains one prime polynomial, $(x^2 + 4)$, and one polynomial that can be factored further, $(x^2 - 4)$. The polynomial $(x^2 - 4)$ can be factored into (x + 2)(x - 2). So, factored completely, the answer is $(x^2 + 4)(x + 2)(x - 2)$.
- 2. This expression can be factored by grouping. Begin by rewriting it as $(z^3 z) + (5z^2 5)$. Because z^3 and zhave a common factor, z, $(z^3 - z)$ can be factored as $z(z^2 - 1)$. Because $5z^2$ and 5 have a common factor, 5, $(5z^2 - 5)$ can be factored as $5(z^2 - 1)$. The expression becomes $z(z^2 - 1) + 5(z^2 - 1)$. Because $(z^2 - 1)$ is a factor common to both terms, $z(z^2 - 1) + 5(z^2 - 1)$ can be rewritten as $(z^2 - 1)(z + 5)$. Because $(z^2 - 1)$ is a difference of two squares, it can be factored as (z - 1)(z + 1). The complete factorization is (z + 5)(z - 1)(z + 1).
- 3. This is the difference of two squares because $16m^4$ can be written as $(4m^2)^2$ and $81n^4$ can be written as $(9n^2)^2$. Therefore, $16m^4 - 81n^4$ can be written as $(4m^2)^2 - (9n^2)^2$ and factored as $(4m^2 + 9n^2)(4m^2 - 9n^2)$. Because $(4m^2 - 9n^2)$ is also a difference of two squares, it can be factored as (2m + 3n)(2m - 3n). Therefore, the fully factored expression is $(4m^2 + 9n^2)(2m + 3n)(2m - 3n)$.
- 4. Neither Ramzi nor Sashi is correct. Ramzi made an error when he factored out the -3a. When -3a is fac-© 2003 BestQuest tored out of both terms in the binomial, the expression can be rewritten as $-3a(a^2 + b^2)$. This cannot be factored further. Sashi made the same mistake but took it one step further. He mistakenly thought that the partially factored expression was $-3a(a^2 - b^2)$ and then, factored the difference of two squares. But there
- is no difference of two squares because, after factoring out -3a, the expression is $-3a(a^2 + b^2)$.