Module 12 Factoring Using Several Methods
Lesson 6 Dividing Polynomials by Monomials

Factor completely.

1. $3 x^{3}-48 x$

$$
3 x(x-4)(x+4)
$$

3. $12 x^{3}-108 x$
$12 x(x+3)(x-3)$
4. $3 d^{3}+21 d^{2}+36 d$
$3 d(d+4)(d+3)$
5. $5 a^{3}-40 a^{2}+75 a$
$5 a(a-3)(a-5)$
6. $8 z^{2}+28 z+12$

$$
\underline{2(2 z+1)(2 z+6)}
$$

11. $6 d^{3}+2 d^{2}-8 d$

$$
2 d(3 d+4)(d-1)
$$

13. $r^{3}+2 r^{2}-16 r-32$
$(r+4)(r-4)(r+2)$
14. $6 m^{6}-12 m^{4}-48 m^{2}$
$6 m^{2}\left(m^{2}+2\right)(m+2)(m-2)$
15. $a^{2} b+3 a^{2}-36 b-108$

$$
(a+6)(a-6)(b+3)
$$

19. $-2 f^{2} g^{2}+10 f^{2} g+18 g^{2}-90 g$
20. $y^{4}-81 y^{2}$

$$
y^{2}(y-9)(y+9)
$$

4. $-4 c^{3}+196 c$

$$
-4 c(c-7)(c+7)
$$

6. $2 x^{3}+6 x^{2}-20 x$

$$
2 x(x+5)(x-2)
$$

8. $3 p^{2} q+12 p q-63 q$
$3 q(p+7)(p-3)$
9. $12 f^{3}-2 f^{2}-4 f$

$$
2 f(3 f-2)(2 f+1)
$$

12. $12 m^{3} n+2 m^{2} n-80 m n$

$$
2 m n(3 m+8)(2 m-5)
$$

14. $2 b^{5}-32 b$

$$
2 b\left(b^{2}+4\right)(b+2)(b-2)
$$

16. $162 n^{9}-288 n^{7}+288 n^{5}-512 n^{3}$
$\underline{2 n^{3}\left(9 n^{4}+16\right)(3 n+4)(3 n-4)}$
17. $3 c^{2} d^{2}+21 c^{2} d-48 d^{2}-336 d$
$3 d(c+4)(c-4)(d+7)$
18. $2 x^{3} y^{2}-18 x^{3}+32 x y^{2}-288 x$
$\underline{2 x\left(x^{2}+16\right)(y+3)(y-3)}$

Journal

1. Raoul believes that the simplest factored form of $x^{4}-16$ is $\left(x^{2}+4\right)\left(x^{2}-4\right)$. Explain why he is incorrect and provide the correct answer.
2. Describe the process for factoring $z^{3}+5 z^{2}-z-5$.
3. Explain the steps for completely factoring $16 m^{4}-81 n^{4}$.
4. Ramzi and Sashi have been discussing the difference of two squares. Ramzi states that the completely factored form of $-3 a^{3}-3 a b^{2}$ is $-3 a\left(a^{2}-b^{2}\right)$, but Sashi insists that the completely factored form is $-3 a(a+b)(a-b)$. Is either student correct? Explain why or why not.

Cumulative Review

Simplify.

1. $14 x^{2}+28$

$$
14\left(x^{2}+2\right)
$$

3. $-(a+b)+c(a+b)$

$$
(a+b)(c-1)
$$

5. $81-4 z^{2}$

$$
(9+2 z)(9-2 z)
$$

7. $x^{2}-2 x-63$

$$
(x+7)(x-9)
$$

9. $5 q^{2}-29 q-6$
$(5 q+1)(q-6)$
10. $-2 m^{3}-16 m$

$$
-2 m\left(m^{2}+8\right)
$$

4. $c d+5+5 d+c$

$$
(c+5)(d+1)
$$

6. $p^{4}-81$

$$
\left(p^{2}+9\right)(p+3)(p-3)
$$

8. $g^{2}-16 g+39$

$$
(g-3)(g-13)
$$

10. $-6 n^{3}-10 n^{2}+56 n$

$$
2 n(-3 n+7)(n+4) \text { or }-2 n(3 n-7)(n+4)
$$

Possible Journal Answers

1. For an expression to be considered factored completely, all the factors must be monomials or prime polynomials. Raoul's solution contains one prime polynomial, $\left(x^{2}+4\right)$, and one polynomial that can be factored further, $\left(x^{2}-4\right)$. The polynomial $\left(x^{2}-4\right)$ can be factored into $(x+2)(x-2)$. So, factored completely, the answer is $\left(x^{2}+4\right)(x+2)(x-2)$.
2. This expression can be factored by grouping. Begin by rewriting it as $\left(z^{3}-z\right)+\left(5 z^{2}-5\right)$. Because z^{3} and z have a common factor, $z,\left(z^{3}-z\right)$ can be factored as $z\left(z^{2}-1\right)$. Because $5 z^{2}$ and 5 have a common factor, $5,\left(5 z^{2}-5\right)$ can be factored as $5\left(z^{2}-1\right)$. The expression becomes $z\left(z^{2}-1\right)+5\left(z^{2}-1\right)$. Because $\left(z^{2}-1\right)$ is a factor common to both terms, $z\left(z^{2}-1\right)+5\left(z^{2}-1\right)$ can be rewritten as $\left(z^{2}-1\right)(z+5)$. Because $\left(z^{2}-1\right)$ is a difference of two squares, it can be factored as $(z-1)(z+1)$. The complete factorization is $(z+5)(z-1)(z+1)$.
3. This is the difference of two squares because $16 \mathrm{~m}^{4}$ can be written as $\left(4 \mathrm{~m}^{2}\right)^{2}$ and $81 \mathrm{n}^{4}$ can be written as $\left(9 n^{2}\right)^{2}$. Therefore, $16 m^{4}-81 n^{4}$ can be written as $\left(4 m^{2}\right)^{2}-\left(9 n^{2}\right)^{2}$ and factored as $\left(4 m^{2}+9 n^{2}\right)\left(4 m^{2}-9 n^{2}\right)$. Because $\left(4 m^{2}-9 n^{2}\right)$ is also a difference of two squares, it can be factored as $(2 m+3 n)(2 m-3 n)$. Therefore, the fully factored expression is $\left(4 m^{2}+9 n^{2}\right)(2 m+3 n)(2 m-3 n)$. tored out of both terms in the binomial, the expression can be rewritten as $-3 a\left(a^{2}+b^{2}\right)$. This cannot be factored further. Sashi made the same mistake but took it one step further. He mistakenly thought that the partially factored expression was $-3 a\left(a^{2}-b^{2}\right)$ and then, factored the difference of two squares. But there is no difference of two squares because, after factoring out $-3 a$, the expression is $-3 a\left(a^{2}+b^{2}\right)$.
