NAME

Module 12	Simplifying Algebraic Expressions by
	Factoring Polynomials
Lesson 1	Factoring by Removing the Greatest
	Common Factor

Factor, if possible.

- **1.** 3x + 6 3(x + 2) **3.** 8*z* – 12 **4.** 15*m* - 35 4(2z – 3) **5.** 14*m*⁴ – 7*m*² $7m^2(2m^2-1)$ **7.** 12*a*⁵ – 6*a*³ $6a^{3}(2a^{2}-1)$ **9.** $8t^4 - 12t^2 + 16$ $4(2t^4 - 3t^2 + 4)$ **11.** $4c^2 + 7c - 3$ No common monomial factor **13.** $16x^3 - 8x^2 + 4x$ $4x(4x^2-2x+1)$ **15.** $x^2y - y^2x$ xy(x - y)**17.** $2m^2n^4 - 5pq$ No common monomial factor **19.** $8x^2y^2 - 32xy^3 + 16y^2$ $8y^2(x^2 - 4xy + 2)$
 - **2.** 5y 25
 - 5(y 5)

5(3m - 7)

- **6.** $5t^3 + 10t^2$
 - $5t^{2}(t + 2)$
- **8.** $2b^4 + 8b^2$

 $2b^2(b^2 + 4)$

- **10.** $3a^2 12a 6$ $3(a^2 - 4a - 2)$
- **12.** $18r^3 + 24r^2 + 12r$

$6r(3r^2 + 4r + 2)$

14. $15f^4 - 10f^2 + 25f$

 $5f(3f^3 - 2f + 5)$

16. 21c²d² - 12cd³

3cd²(7c – 4d)

18. $30p^3q^4 - 40pq^3$

 $10pq^{3}(3p^{2}q - 4)$

20. $14a^4b - 21a^3b^2 + 28a^2b^3$ $7a^{2}b(2a^{2}-3ab+4b^{2})$

© 2003 BestQuest

21. $9y^3z - 3yz^3 + 18z$

 $3z(3y^3 - yz^2 + 6)$

23. $56q^4r^3 + 14q^3r^5 - 42q^2r^4$

 $14q^2r^3(4q^2 + qr^2 - 3r)$

22. $12r^{3}t^{2} + 18r^{2}s^{3} + 36s^{2}t$

 $6(2r^3t^2 + 3r^2s^3 + 6s^2t)$

24. $92cd^5 - 115c^2d^2 - 46c^5d^3$

 $23cd^{2}(4d^{3} - 5c + 2c^{4}d)$

- **1.** Find the prime factors of $12x^2y^5$ and $60x^4y^3$. Use the prime factors to find the GCF of the expressions.
- **2.** Explain how factoring a polynomial is like using the Distributive Property and multiplying in reverse.
- **3.** Lester and Michael have both factored the polynomial $12x^2 + 16x$. Lester factored it as 4x(3x + 4), and Michael factored it as 2x(6x + 8). Who is correct and why?
- **4.** Explain how to factor $30x^3y + 20xy^3 5xy$.
- **5.** Write a trinomial of one variable of the fourth degree and factor it. The trinomial must have a common monomial factor.

Cumulative Review

Simplify.

1. $(x - 2)(x + 2) = \frac{x^2 - 4}{x^2 - 4}$	2. $(a-3)^2 = \frac{a^2 - 6a + 9}{a^2 - 6a + 9}$
3. $(3c - 1)(c + 2)$ 3. $(3c^2 + 5c - 2)$	4. (s + 1)(s − 4) <u>s² − 3s − 4</u>
5. (3 <i>m</i> - 4)(3 <i>m</i> + 4) <u>9m² - 16</u>	6. $(4d + 3)(d - 5) $ 4d² - 17d - 15
7. $(m + 5)^2 $ <u>m² + 10m + 25</u>	8. $(5g + 2)(g - 4)$ 5g² - 18g - 8
9. $(k-6)(k-2)$ $\frac{k^2-8k+12}{k^2-8k+12}$	10. $(n + 5)(n + 8) \frac{n^2 + 13n + 40}{n^2 + 13n + 40}$

Possible Journal Answers

- 1. The prime factorization of $12x^2y^5$ is $2 \cdot 2 \cdot 3 \cdot x \cdot x \cdot y \cdot y \cdot y \cdot y \cdot y$. The prime factorization of $60x^4y^3$ is $2 \cdot 2 \cdot 3 \cdot 5 \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$. The common factors are 2, 2, 3, x, x, y, y, y. The product of these factors is $12x^2y^3$, which is the GCF of the two expressions.
- 2. The Distributive Property is usually written as a(b + c) = ab + ac, but it can also be written as ab + ac = a(b + c). This is the case when factoring. The factor that is distributed during multiplication is removed when the process is reversed and the polynomial is factored.
- 3. Lester is correct. Although both boys found a common factor and factored the polynomial, only Lester found the greatest common factor.
- 4. Find the GCF, 5xy. Divide each term by 5xy to get $6x^2 + 4y^2 1$. The answer is $5xy(6x^2 + 4y^2 1)$.
- 5. A possible answer is $16x^4 12x^3 + 8x^2$. This trinomial factors as $4x^2(4x^2 3x + 2)$.