NAME

Module 11	Simplifying Algebraic Expressions
	with Polynomials
Lesson 4	Multiplying Monomials and Binomials

Find the product.

1.	4h · 2h	2.	(–2t ³)(–5t ²)
	8h ²	_	10t ⁵
3.	$\frac{2}{3}w \cdot (-9w^3)$	4.	$3x^2y \cdot 2xy^3$
	-6w ⁴	_	<u>6x³y⁴</u>
5.	(4 <i>m</i> ² <i>n</i> ³)(–5 <i>m</i> ³)	6.	5b(b ³ - 6b)
	-20m ⁵ n ³	_	$5b^4 - 30b^2$
7.	$-4g^{3}h^{2}(4gh^{2}-g^{2}h^{3})$	8.	(x + 4)(x + 6)
	$-16g^4h^4 + 4g^5h^5$	_	$x^2 + 10x + 24$
9.	(w - 8)(w + 3)	10.	(r - 11)(r + 11)
	$w^2 - 5w - 24$	_	<u>r² - 121</u>
11.	$(g + 7)^2$	12.	$(b - 6)^2$
	$g^2 + 14g + 49$	_	$b^2 - 12b + 36$
Jo	ournal		

- **1.** A friend missed class today and wants to know how to multiply two monomials. Explain in words how to find the product $(-4x^2)(-6x^4)$.
- **2.** What is the product $(x + a)^2$? Write a rule for finding the square of a binomial that contains an addition symbol and use the rule to find the product $(x + 3)^2$.
- **3.** What is the product $(x a)^2$? Write a rule for finding the square of a binomial that contains a subtraction symbol and use the rule to find the product $(x 6)^2$.
- **4.** A student claimed the simplified product of any two binomials is a trinomial. Is the student correct? Give an example to support this answer.
- **5.** Find the product (x + 5)(x + 4), showing each step. How are the constants 5 and 4 in the binomial factors related to the coefficient of the middle term in the product? How are the constants 5 and 4 in the binomial factors related to the last term in the product? If $(x + a)(x + b) = x^2 + cx + d$, how are *a*, *b*, and *c* related? How are *a*, *b*, and *d* related?

© 2003 BestQuest

Cumulative Review

Simplify. 1. $3x^2 - 5x^2$ **2.** 4 - 9b + 37 – 9b or –9b + 7 **-2**x² **3.** $5m + 2m^2 - m$ **4.** 3(*x* − 4) + 1 3x - 11 $2m^2 + 4m$ **5.** 2(x + 3) - 5x**6.** $w^3 \cdot w^5 \cdot w$ -3x + 6 **w**⁹ **7.** 6x - 4(x + 3)**8.** 3(b + 1) + 4(2 - b)2x - 12 11 - b or -b + 11**9.** $3h - 4h^2 + h^3 - 7h + 5h^2$ **10.** $8x^2v - 3xv + 2x^2v - 4xv^2 - 2xv$ $10x^2y - 5xy - 4xy^2$ $h^3 + h^2 - 4h$

Manipulatives

Use algebra tiles to represent the product (2x - 3)(x + 1).

- Represent the factor 2x 3 to the left of the vertical gridline and represent the factor x + 1 above the horizontal gridline. See Figure 1. Solid figures represent negatives and hollow figures represent positives. A small square represents the number one, a rectangle represents x, and a large square represents x².
- **2.** The factor 2x 3 is represented by two x-rectangles and three small negative one-squares. The factor x + 1 is represented by one x-rectangle and one small one-square.
- **3.** The product is represented below and to the right of the gridlines. An x-rectangle times an x-rectangle is a large x²-square. An x-rectangle times a small negative one-square equals a –x-rectangle. A small one-square times an x-rectangle equals an x-rectangle. A small one-square times a small negative one-square equals a small negative one-square. See Figure 2.
- **4.** Combine small squares with small squares, rectangles with rectangles, and large squares with large squares (combine like terms). There are two x^2 -squares: $x^2 + x^2 = 2x^2$. There are two x-rectangles and three -x-rectangles. Pair a positive rectangle with a negative rectangle (this is called a zero pair because their sum is zero) and remove that pair of tiles. Then, remove another positive rectangle and negative rectangle (another zero pair). The only remaining rectangle is one -x-rectangle: 2x 3x = -x. There are three small negative one-squares: -1 1 1 = -3. After combining all like terms, you have the simplified product: $2x^2 x 3$. See Figure 3.

Use algebra tiles to find the following products.

- **1.** 3x(x + 3)
 - $3x^2 + 9x$
- **3.** (x + 1)(x + 4)

 $x^2 + 5x + 4$

Figure 3

2.
$$(x + 2)(x - 2)$$

 $x^2 - 4$

4. $5(2x^2 + 3x)$

 $10x^2 + 15x$

Possible Journal Answers

- 1. To find the product of $-4x^2$ and $-6x^4$, first find the product of the coefficients: (-4)(-6) = 24. Next, find the product of the powers of x: $x^2 \cdot x^4 = x^{2+4} = x^6$. So, the product of $-4x^2$ and $-6x^4$ is 24x⁶.
- 2. $(x + a)^2 = (x + a)(x + a) = x^2 + xa + ax + a^2 = x^2 + 2ax + a^2$ The square of a binomial containing an addition symbol is the square of the first term; plus twice the product of the first term and the second term; plus the square of the second term. $(x + 3)^2 = x^2 + 2(3)x + 3^2 = x^2 + 6x + 9$

3.
$$(x - a)^2 = (x - a)(x - a) = x^2 - xa - ax + a^2 = x^2 - 2ax + a^2$$

The square of a binomial containing a subtraction symbol is the square of the first term; minus twice the product of the first term and the second term; plus the square of the second term.
 $(x - 6)^2 = x^2 - 2(6)x + 6^2 = x^2 - 12x + 36$

- 4. No, the student is not correct. The simplified product of two binomials is not always a trinomial. For example, $(x + 3)(x - 3) = x^2 + 3x - 3x - 9 = x^2 - 9$.
- 5. $(x + 5)(x + 4) = x^2 + 4x + 5x + 20 = x^2 + 9x + 20$ The coefficient of the middle term, nine, is the sum of five and four. The last term, 20, is the product of five and four. If $(x + a)(x + b) = x^2 + cx + d$, then a + b = c, and ab = d.