NAME

Module 9 Using Functions
 Lesson 3 Writing Functions from Patterns

Set 1

1. Javier has designed a simple robot that can pick up blocks and stack them in groups. The table shows how many blocks the robot can stack in a given time period.

Input	Output
Number of Minutes Stacking	Number of Blocks Stacked
1	1
2	2
8	8

Write a function to represent the pattern and use it to find how many blocks the robot can stack in 19 minutes.
$f(x)=x$; The robot can stack 19 blocks in 19 minutes.
2. Write a function for the pattern shown in the

$$
\text { table. } f(x)=\frac{1}{4} x+1
$$

Input	Output
0	1
1	$1 \frac{1}{4}$
2	$1 \frac{1}{2}$
3	$1 \frac{3}{4}$

3. Write a function for the pattern shown in the table. $f(x)=3 x-1$

Input	Output
-4	-13
-1	-4
3	8
7	20

4. Find a function that contains the following ordered pairs:
$(0,-11),(1,-7),(2,-3),(3,1)$
$f(x)=4 x-11$
5. Find a function that contains the following ordered pairs:
$(-1,-1.5),(-2,-0.5),(-3,0.5),(-4,1.5)$
$f(x)=-x-2.5$

Set 2

1. Write a function for the input/output table.
$f(x)=|x|$
2. Write a function for the input/output table.
$f(x)=\frac{1}{x}$

Input	Output
-4	$-\frac{1}{4}$
1	1
3	$\frac{1}{3}$
8	$\frac{1}{8}$

3. Write a function for the given mapping.
$f(x)=x^{3}$

4. Write a function for the given mapping.
$f(x)=x^{2}+5$

