NAME

Module 8 Writing Linear Equations of Two Variables
Lesson 4 Solving Linear Equations in Two Variables When Parameters Are Changed

Set 1

1. Given $y=-x+4$, determine the resulting equation when the slope is increased by two. Compare the graphs.

Equation: $y=-x+4$ becomes $y=x+4$
Graph: The lines are perpendicular with the

2. Given $y=\frac{5}{6} x+3$, determine the resulting equation when the y-intercept is decreased by 7 . Compare the graphs.
Equation: $y=\frac{5}{6} x+3$ becomes $y=\frac{5}{6} x-4$
Graph: The slope does not change. The new
line is 7 units lower.

3. Given $y=\frac{1}{2} x+1$, determine the resulting equation when the slope is multiplied by negative sixteen. Compare the graphs.
Equation: $y=\frac{1}{2} x+1$ becomes $y=-8 x+1$
Graph: The y-intercept does not change. The
steepness and direction of the second line change.

Set 2

1. Find an equation of the line with the same y-intercept and opposite slope as the line $2 x+y=3$. Compare the graphs.
Equation: $\boldsymbol{y}=2 \boldsymbol{x}+3$; Comparison: The lines intersect the y-axis at the same point. The lines have the same steepness but in opposite

Module 8 Lesson 4
2. Find an equation of the line with the same slope and opposite y-intercept as the line $2 x+y=3$. Compare the graphs.

Equation: $y=-2 x-3$
Comparison: The lines are parallel.

3. Find the slope and y-intercept of $2 x+y=3$. Find an equation of the line whose slope is negative one-fourth times the slope of the given line and whose y-intercept is three less than the y-intercept of the given line. Compare the graphs of the two lines. slope $m=-2$. y-intercept $b=3$. Equation: $y=\frac{1}{2} x$; Comparison: The new line is perpendicular to the given line. The new line also intersects the y-axis three units below the

