NAME

Module 18 Solving Radical Equations
 Lesson 3 Solving Problems Using Radical Equations

Set 1

1. The time in seconds, T, it takes for an object to fall a given distance in feet, d, can be found using the formula $T=\sqrt{\frac{d}{16}}$. An object was dropped from a bridge and hit the water 3.8 seconds later. Find how far the object fell to the nearest foot.
$\underline{231.04 \mathrm{ft} \text { or approximately } 231 \mathrm{ft}}$
2. The time elapsed during one complete swing of a pendulum can be found using the formula $T=6.28 \sqrt{\frac{1}{32}}$. In this formula, T is the time in seconds, and l is the length in feet of the pendulum. What is length of a pendulum that makes one swing in 2.5 seconds?
about 5.12 ft
3. A fisherman traveled due north $4 \frac{1}{2}$ meters from his fishing spot to the opposite bank of a stream. He then headed due east and walked upstream, parallel to the stream, until the distance from his original spot was $7 \frac{1}{2}$ meters. How far did the fisherman walk upstream? Use the formula $c=\sqrt{a^{2}+b^{2}}$, where c is the length
 of the hypotenuse and a and b are the lengths of the legs.

6 meters

