NAME

Module 9 Using Functions
 Lesson 6 Evaluating Composite Functions

Lesson Objectives

- Find compositions of two functions.
- Identify functions that are inverses by using composition of functions.

The Composition of Two Functions

$(f \circ g)(x)=\underline{f(g(x))}$
The symbol \circ is used for the composition of two functions.
$(f \circ g)(x)$ and $f(g(x))$ are both read " f of g of x "
(1) Evaluate $(f \circ g)(4)$ and $(g \circ f)(4)$.
$f(x)=x+7$
$g(x)=5 x$
$(f \circ g)(4)=\underline{27}$
$(g \circ f)(4)=\underline{55}$
(2) Evaluate $f(g(4))$ and $g(f(4))$.
$f(x)=3 x$
$g(x)=3 x$
$f(g(4))=36$
$g(f(4))=36$
(3.) Evaluate $f(g(9))$ and $g(f(9))$.
$f(x)=\sqrt{x}$
$g(x)=x^{2}$

(4) Find $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$
f(x)=x+7
$$

$$
g(x)=5 x
$$

$(f \circ g)(x)=\underline{5 x+7}$
$(g \circ f)(x)=\underline{5 x+35}$
Find $f(g(x))$ and $g(f(x))$.
$f(x)=\sqrt{x}$
$g(x)=x^{2}$
$f(g(x))=\underline{x}$
$g(f(x))=\underline{x}$

Two functions f and g are called inverse functions, if and only if,

$$
f(g(x))=x \text { for all } x \text { in the domain of } g
$$

and $g(f(x))=x$ for all x in the domain of f.
6. Determine if the following two functions are inverses of each other.

$$
\begin{aligned}
& f(x)=2 x \\
& g(x)=\frac{x}{2}
\end{aligned}
$$

The functions are inverses of each other because

$$
f(g(x))=x \text { and } g(f(x))=x
$$

