NAME

Module 8 Writing Linear Equations of Two Variables
 Lesson 4 Solving Linear Equations in Two Variables When Parameters Are Changed

Lesson Objectives

- Transform an equation into slope-intercept form when it is given in standard form.
- Graph an equation given in standard form.
- Identify the effects of parameter changes on the appearance of graphs.

The parameters in the equation $y=m x+b$ are m and b

Changing the parameter b moves a line up or down the \underline{y}-axis without changing its slope.

Changing the value of the parameter m affects the steepness and direction _ of a line.

Changing the parameter m to its opposite reciprocal creates a line perpendicular to the original line with the same y-intercept.

For problems 1-3, graph the equations on a coordinate plane. Use a separate sheet
of grid paper.
(1) Given $y=-\frac{1}{4} x-2$, determine the resulting equation when the y-intercept is increased by six. Compare the graphs.
Equation: $y=-\frac{1}{4} x-2$ becomes $y=-\frac{1}{4} x+4$
Graph: The line is translated up 6 units.
(2) Given $y=-\frac{1}{4} x-2$, determine the resulting equation when the slope is
multiplied by -16 . Compare the graphs.
Equation: $y=-\frac{1}{4} x-2$ becomes $y=4 x-2$
Graph: The lines are perpendicular with the same y-intercept.

Given $y=3 x-4$, determine the resulting equation when the slope is divided
by -6 . Compare the graphs.
Equation: $y=3 x-4$ becomes $y=-\frac{1}{2} x-4$
Graph: The lines have the same y-intercept but different slopes.

Slope-intercept form, point-slope form, and standard form are three
forms a linear equation can take.
Standard form of a linear equation is $A x+B y=C$ where

A and $\quad B$ cannot both be zero

Slope-intercept form of a linear equation is $\underline{y=m x+b}$
To convert a linear equation from standard form to slope-intercept form, solve it for \boldsymbol{y} and write in the form $y=m x+b$

Graph the line $3 x-y=6$. Find an equation of the line whose slope is one-third the slope of the given line and whose y-intercept is four more than the y-intercept of the given line.

Graph the new line and compare the graphs. The new line is less steep than the given line and intersects the y-axis four units above the given line.

Linear Equations

- Slope-Intercept Form: $y=m x+b$
- Point-Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
- Standard Form: $A x+B y=C$, where \underline{A} and B
cannot both be zero

